Low-noise and wideband hot-electron superconductive mixers for THz frequencies

被引:0
|
作者
Karasik, BS [1 ]
Skalare, A [1 ]
Wyss, RA [1 ]
McGrath, WR [1 ]
Bumble, B [1 ]
LeDuc, HG [1 ]
Barner, JB [1 ]
Kleinsasser, AW [1 ]
机构
[1] CALTECH, Jet Prop Lab, Ctr Space Microelect Technol, Pasadena, CA 91109 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Superconductive hot-electron bolometer (HEB) mixers have been built and tested in the frequency range from 1.1 THz to 2.5 THz The mixer device is a 0.15-0.3 mu m microbridge made from a 10 nm thick Nb film. This device employs diffusion as a cooling mechanism for hot electrons. The double sideband noise temperature was measured to be less than or equal to 3000 K at 2.5 THz and the mixer IF bandwidth is similar to 9-10 GHz for a 0.1 mu m long device. The local oscillator (LO) power dissipated In the HEB microbridge was 20-100 nW. Further improvement of the mixer characteristics can be potentially achieved by using Al microbridges. The advantages and parameters of such devices are evaluated. The HEB mixer is a primary candidate for ground based, airborne and spaceborne heterodyne instruments at THz frequencies. HEB receivers are planned for nse on the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) and the ESA Far Infrared and Submillimeter Space Telescope (FIRST). The prospects of a submicron-size YBa2Cu3O7-delta (YBCO) HEB are also discussed. The expected LO power of 1-10 mu W and SSB noise temperature of similar to 2000 K may make this mixer attractive for various remote sensing applications.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] Reduced noise in NbN hot-electron bolometer mixers by annealing
    Yang, ZQ
    Hajenius, M
    Baselmans, JJA
    Gao, JR
    Voronov, B
    Gol'tsman, GN
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (04): : L9 - L12
  • [22] Length scaling of bandwidth and noise in hot-electron superconducting mixers
    Burke, PJ
    Schoelkopf, RJ
    Prober, DE
    Skalare, A
    McGrath, WR
    Bumble, B
    LeDuc, HG
    APPLIED PHYSICS LETTERS, 1996, 68 (23) : 3344 - 3346
  • [23] Gain and noise bandwidth of NbN hot-electron bolometric mixers
    Ekstrom, H
    Kollberg, E
    Yagoubov, P
    Goltsman, G
    Gershenzon, E
    Yngvesson, S
    APPLIED PHYSICS LETTERS, 1997, 70 (24) : 3296 - 3298
  • [24] MgB2 Hot-Electron Bolometer Mixers at Terahertz Frequencies
    Bevilacqua, Stella
    Novoselov, Evgenii
    Cherednichenko, Sergey
    Shibata, Hiroyuki
    Tokura, Yasuhiro
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
  • [25] Low noise in a diffusion-cooled hot-electron mixer at 2.5 THz
    Karasik, BS
    Gaidis, MC
    McGrath, WR
    Bumble, B
    LeDuc, HG
    APPLIED PHYSICS LETTERS, 1997, 71 (11) : 1567 - 1569
  • [26] Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz
    Hajenius, M
    Baselmans, JJA
    Gao, JR
    Klapwijk, TM
    de Korte, PAJ
    Voronov, B
    Gol'tsman, G
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2004, 17 (05): : S224 - S228
  • [27] NbN Hot Electron Bolometric mixers - A new technology for low noise THz receivers
    Gerecht, E
    Musante, CF
    Zhuang, Y
    Yngvesson, KS
    Goyette, T
    Dickinson, J
    Waldman, J
    Yagoubov, PA
    Gol'tsman, GN
    Voronov, BM
    Gershenzon, EM
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 1789 - 1792
  • [28] MgB2 hot-electron bolometer mixers for THz heterodyne instruments
    Novoselov, Evgenii
    Zhang, Naichuan M.
    Cherednichenko, Sergey
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VIII, 2016, 9914
  • [29] The current status of low-noise THz mixers based on SIS junctions
    Jackson, BD
    Klapwijk, TM
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 372 : 368 - 373
  • [30] Low Noise Receivers at 1.6 THz and 2.5 THz Based on Niobium Nitride Hot Electron Bolometer Mixers
    Chen, J.
    Liang, M.
    Kang, L.
    Jin, B. B.
    Xu, W. W.
    Wu, P. H.
    Zhang, W.
    Jiang, L.
    Li, N.
    Shi, S. C.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) : 278 - 281