Canonical Models on Strongly Convex Domains via the Squeezing Function

被引:3
作者
Altavilla, Amedeo [1 ]
Arosio, Leandro [2 ]
Guerini, Lorenzo [3 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[3] Univ Amsterdam, Korteweg de Vries Inst Math, Sci Pk 107, NL-1090 GE Amsterdam, Netherlands
关键词
Strongly convex domains; Iteration theory; Squeezing function; Canonical models; BACKWARD ITERATION; FIXED-POINTS; MAPPINGS;
D O I
10.1007/s12220-020-00448-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if a holomorphic self-map f: Omega ->Omega of a bounded strongly convex domain Omega subset of C-q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball Bk. We also obtain the dual result for a holomorphic self-map f : Omega ->Omega with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of f via the squeezing function.
引用
收藏
页码:4661 / 4702
页数:42
相关论文
共 24 条
[1]   HOROSPHERES AND ITERATES OF HOLOMORPHIC MAPS [J].
ABATE, M .
MATHEMATISCHE ZEITSCHRIFT, 1988, 198 (02) :225-238
[2]  
Abate M., 1989, Iteration theory of holomorphic maps on taut manifolds
[3]   Common Boundary Regular Fixed Points for Holomorphic Semigroups in Strongly Convex Domains [J].
Abate, Marco ;
Bracci, Filippo .
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS, 2016, 667 :1-14
[4]   Backward iteration in strongly convex domains [J].
Abate, Marco ;
Raissy, Jasmin .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2837-2854
[5]   ON THE GROUP OF HOLOMORPHIC AUTOMORPHISMS OF C(N) [J].
ANDERSEN, E ;
LEMPERT, L .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :371-388
[6]   BACKWARD ORBITS IN THE UNIT BALL [J].
Arosio, Leandro ;
Guerini, Lorenzo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (09) :3947-3954
[7]   Canonical Models for the Forward and Backward Iteration of Holomorphic Maps [J].
Arosio, Leandro .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) :1178-1210
[8]   CANONICAL MODELS FOR HOLOMORPHIC ITERATION [J].
Arosio, Leandro ;
Bracci, Filippo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) :3305-3339
[9]   The stable subset of a univalent self-map [J].
Arosio, Leandro .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) :1089-1110
[10]   Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains [J].
Balogh, ZM ;
Bonk, M .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) :504-533