On Linear Quotients of Squarefree Monomial Ideals

被引:0
作者
Manouchehri, Erfan [1 ]
Jahan, Ali Soleyman [1 ]
机构
[1] Univ Kurdistan, Dept Math, POB 66177-15175, Sanandaj, Iran
关键词
Linear syzygies; Linear resolution; Linear quotients; Variable-decomposable;
D O I
10.1007/s40840-019-00737-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I subset of K[x(1),..., x(n)] be a squarefree monomial ideal generated in one degree. Let G(I) be the graph whose nodes are the generators of I, and two vertices u(i) and u(j) are adjacent if there exist variables x, y such that xu(i) = yu(j). We show that if I is (i) G(I) is a connected graph; (ii) I has a (n - 2)-linear resolution; (iii) I has linear quotients; (iv) I is a variable-decomposable ideal. We also prove that if I has linear relations and (G(I)) over bar is chordal, then I has linear quotients.
引用
收藏
页码:1213 / 1221
页数:9
相关论文
共 13 条
[1]   Vertex Decomposability of 2-CM and Gorenstein Simplicial Complexes of Codimension 3 [J].
Ajdani, Seyed Mohammad ;
Jahan, Ali Soleyman .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) :609-617
[2]  
[Anonymous], 1990, TOPICS ALGEBRA
[3]   Resolutions of Stanley-Reisner rings and Alexander duality [J].
Eagon, JA ;
Reiner, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (03) :265-275
[4]  
Emtander E, 2010, MATH SCAND, V106, P50
[5]   Monomial ideals whose powers have a linear resolution [J].
Herzog, J ;
Hibi, T ;
Zheng, XX .
MATHEMATICA SCANDINAVICA, 2004, 95 (01) :23-32
[6]  
Herzog J, 2011, GRAD TEXTS MATH, V260, P3, DOI 10.1007/978-0-85729-106-6
[7]  
Manouchehri E., ARXIV180900133
[8]   Incremental construction properties in dimension two-shellability, extendable shellability and vertex decomposability [J].
Moriyama, S ;
Takeuchi, F .
DISCRETE MATHEMATICS, 2003, 263 (1-3) :295-296
[9]   k-Decomposable Monomial Ideals [J].
Rahmati-Asghar, Rahim ;
Yassemi, Siamak .
ALGEBRA COLLOQUIUM, 2015, 22 :745-756
[10]   Shellable graphs and sequentially Cohen-Macaulay bipartite graphs [J].
Van Tuyl, Adam ;
Villarreal, Rafael H. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (05) :799-814