Macroscopic description for the quantum Weibel instability

被引:23
作者
Haas, F. [1 ,2 ]
Lazar, M. [1 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 4, D-44780 Bochum, Germany
[2] Univ Vale Rio dos Sinos, UNISINOS, BR-9302000 Sao Leopoldo, RS, Brazil
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 04期
关键词
D O I
10.1103/PhysRevE.77.046404
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Weibel instability in the quantum plasma case is treated by means of a fluidlike (moments) approach. Quantum modifications to the macroscopic equations are then identified as effects of the first or second kind. Quantum effects of the first kind correspond to a dispersive term, similar to the Bohm potential in the quantum hydrodynamic equations for plasmas. Effects of the second kind are due to the Fermi statistics of the charge carriers and can become the dominant influence for strong degeneracy. The macroscopic dispersion relations are of higher order than those for the classical Weibel instability. This corresponds to the presence of a cutoff wave number even for the strong temperature anisotropy case.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Ultrashort-pulse child-langmuir law in the quantum and relativistic regimes [J].
Ang, L. K. ;
Zhang, P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[2]   Space-charge-limited flows in the quantum regime [J].
Ang, L. K. ;
Koh, W. S. ;
Lau, Y. Y. ;
Kwan, T. J. T. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[3]   DIELECTRIC RESPONSE OF QUANTUM PLASMAS IN THERMAL-EQUILIBRIUM [J].
ARISTA, NR ;
BRANDT, W .
PHYSICAL REVIEW A, 1984, 29 (03) :1471-1480
[4]   Moment equation description of Weibel instability [J].
Basu, B .
PHYSICS OF PLASMAS, 2002, 9 (12) :5131-5134
[5]   Spin magnetohydrodynamics [J].
Brodin, G. ;
Marklund, M. .
NEW JOURNAL OF PHYSICS, 2007, 9
[6]   QUALITATIVE ASPECTS OF UNDERDENSE MAGNETIC-FIELDS IN LASER-FUSION PLASMAS [J].
ESTABROOK, K .
PHYSICAL REVIEW LETTERS, 1978, 41 (26) :1808-1811
[7]   MECHANISM FOR INSTABILITY OF TRANSVERSE PLASMA WAVES [J].
FRIED, BD .
PHYSICS OF FLUIDS, 1959, 2 (03) :337-337
[8]   Smooth quantum potential for the hydrodynamic model [J].
Gardner, CL ;
Ringhofer, C .
PHYSICAL REVIEW E, 1996, 53 (01) :157-167
[9]   Quantum Weibel instability [J].
Haas, F. .
PHYSICS OF PLASMAS, 2008, 15 (02)
[10]   Variational approach for the quantum Zakharov system [J].
Haas, F. .
PHYSICS OF PLASMAS, 2007, 14 (04)