Relativistic diffusive motion in random electromagnetic fields

被引:3
作者
Haba, Z. [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland
关键词
SUPERDIFFUSION;
D O I
10.1088/1751-8113/44/33/335202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juttner equilibrium at the inverse temperature beta(-1) = mc(2). The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
引用
收藏
页数:11
相关论文
共 30 条
[1]  
[Anonymous], THESIS PRINCETON U
[2]   ON A RELATIVISTIC FOKKER-PLANCK EQUATION IN KINETIC THEORY [J].
Antonio Alcantara, Jose ;
Calogero, Simone .
KINETIC AND RELATED MODELS, 2011, 4 (02) :401-426
[3]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[4]   Relativistic diffusions: A unifying approach [J].
Chevalier, C. ;
Debbasch, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (04)
[5]  
Debbasch F, 2007, AIP CONF PROC, V913, P42, DOI 10.1063/1.2746722
[6]   Relativistic Ornstein-Uhlenbeck process [J].
Debbasch, F ;
Mallick, K ;
Rivet, JP .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) :945-966
[7]   LORENTZ-INVARIANT MARKOV PROCESSES IN RELATIVISTIC PHASE SPACE [J].
DUDLEY, RM .
ARKIV FOR MATEMATIK, 1966, 6 (03) :241-&
[8]   Theory of relativistic Brownian motion:: The (1+3)-dimensional case -: art. no. 036106 [J].
Dunkel, J ;
Hänggi, P .
PHYSICAL REVIEW E, 2005, 72 (03)
[9]   Relativistic Brownian motion [J].
Dunkel, Joern ;
Haenggi, Peter .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 471 (01) :1-73
[10]   Relativistic diffusion processes and random walk models [J].
Dunkel, Joern ;
Talkner, Peter ;
Haenggi, Peter .
PHYSICAL REVIEW D, 2007, 75 (04)