Parameter identification and optimization in piezoelectric energy harvesting: analytical relations, asymptotic analyses, and experimental validations

被引:27
作者
Erturk, A. [1 ]
Inman, D. J. [2 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Virginia Polytech Inst & State Univ, Ctr Intelligent Mat Syst & Struct, Blacksburg, VA 24061 USA
关键词
piezoelectricity; energy harvesting; parameter identification; electromechanical systems; MODEL; DESIGN;
D O I
10.1177/0959651810396280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mathematical analyses of distributed-parameter piezoelectric energy harvester equations are presented for parameter identification and optimization. The focus is placed on the single-mode voltage and vibration frequency response functions (FRFs) per translational base acceleration. Asymptotic trends of the voltage output and the tip displacement FRFs are investigated and expressions are obtained for the extreme conditions of the load resistance. The relationship between the linear voltage asymptotes and the optimal load resistance is discussed. Resonance frequencies of the voltage and the tip displacement FRFs are obtained accounting for the presence of mechanical losses. Closed-form expressions are extracted for the optimal electrical loads of maximum power generation at the short-circuit and open-circuit resonance frequencies of the voltage FRF. Analytical relations are given also for the identification of modal mechanical damping both from the voltage and the vibration FRFs using a single data point. Vibration attenuation and amplification due to resonance frequency shift is also addressed. An experimental case study is presented to validate some of the major equations derived here.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 33 条
[1]   Strength analysis of piezoceramic materials for structural considerations in energy harvesting for UAVs [J].
Anton, S. R. ;
Erturk, A. ;
Inman, D. J. .
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2010, PTS 1 AND 2, 2010, 7643
[2]   Multifunctional self-charging structures using piezoceramics and thin-film batteries [J].
Anton, S. R. ;
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (11)
[3]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[4]   A piezoelectric bistable plate for nonlinear broadband energy harvesting [J].
Arrieta, A. F. ;
Hagedorn, P. ;
Erturk, A. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2010, 97 (10)
[5]   Energy Harvesting From Vibrations With a Nonlinear Oscillator [J].
Barton, David A. W. ;
Burrow, Stephen G. ;
Clare, Lindsay R. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2010, 132 (02) :0210091-0210097
[6]   Energy harvesting MEMS device based on thin film piezoelectric cantilevers [J].
Choi, W. J. ;
Jeon, Y. ;
Jeong, J. -H. ;
Sood, R. ;
Kim, S. G. .
JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) :543-548
[7]  
Clough R., 1975, Dynamics of Structures
[8]   Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems [J].
Cook-Chennault, K. A. ;
Thambi, N. ;
Sastry, A. M. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (04)
[9]   Nonlinear Energy Harvesting [J].
Cottone, F. ;
Vocca, H. ;
Gammaitoni, L. .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[10]   Response of uni-modal duffing-type harvesters to random forced excitations [J].
Daqaq, Mohammed F. .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (18) :3621-3631