Artificial Neural Networks and Gompertz Functions for Modelling and Prediction of Solvents Produced by the S. cerevisiae Safale S04 Yeast

被引:4
作者
Almeida, Vinicio Moya [1 ]
Iglesias, Belen Diezma [1 ]
Hernando, Eva Cristina Correa [1 ]
机构
[1] Univ Politecn Madrid, Escuela Tecn Super Ingn Agron Alimentaria & Biosi, Lab Propiedades Fis & Tecn Avanzadas Agroalimenta, Av Puerta Hierro 2-4, Madrid 28040, Spain
来源
FERMENTATION-BASEL | 2021年 / 7卷 / 04期
关键词
beer quality; solvents; fermentation; Saccharomyces cerevisiae; process control; BEER; FERMENTATION; GROWTH;
D O I
10.3390/fermentation7040217
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The present work aims to develop a mathematical model, based on Gompertz equations and ANNs to predict the concentration of four solvent compounds (isobutanol, ethyl acetate, amyl alcohol and n-propanol) produced by the yeasts S. cerevisiae, Safale S04, using only the fermentation temperature as input data. A beer wort was made, daily samples were taken and analysed by GC-FID. The database was grouped into five datasets of fermentation at different setpoint temperatures (15.0, 16.5, 18.0, 19.0 and 21.0 degrees C). With these data, the Gompertz models were parameterized, and new virtual datasets were used to train the ANNs. The coefficient of determination (R-2) and p-value were used to compare the results. The ANNs, trained with the virtual data generated with the Gompertz functions, were the models with the highest R-2 values (0.939 to 0.996), showing that the proposed methodology constitutes a useful tool to improve the quality (flavour and aroma) of beers through temperature control.
引用
收藏
页数:14
相关论文
共 25 条
[1]   Novel microencapsulated yeast for the primary fermentation of green beer: kinetic behavior, volatiles and sensory profile [J].
Benucci, Ilaria ;
Cecchi, Teresa ;
Lombardelli, Claudio ;
Maresca, Diamante ;
Mauriello, Gianluigi ;
Esti, Marco .
FOOD CHEMISTRY, 2021, 340
[2]  
Brewing with E2U&TRADE, NO MOR REH NEED
[3]   Evolution of Aromatic Profile of Torulaspora delbrueckii Mixed Fermentation at Microbrewery Plant [J].
Canonico, Laura ;
Ciani, Enrico ;
Galli, Edoardo ;
Comitini, Francesca ;
Ciani, Maurizio .
FERMENTATION-BASEL, 2020, 6 (01)
[4]   Influence of the dealcoholisation by osmotic distillation on the sensory properties of different beer types [J].
De Francesco, Giovanni ;
Marconi, Ombretta ;
Sileoni, Valeria ;
Freeman, Gary ;
Lee, Eung Gwan ;
Floridi, Simona ;
Perretti, Giuseppe .
JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2021, 58 (04) :1488-1498
[5]   PREDICTION OF ESTER PRODUCTION IN INDUSTRIAL BEER FERMENTATION [J].
GARCIA, AI ;
GARCIA, LA ;
DIAZ, M .
ENZYME AND MICROBIAL TECHNOLOGY, 1994, 16 (01) :66-71
[6]   FUSEL ALCOHOLS PRODUCTION IN BEER FERMENTATION PROCESSES [J].
GARCIA, AI ;
GARCIA, LA ;
DIAZ, M .
PROCESS BIOCHEMISTRY, 1994, 29 (04) :303-309
[7]   Effect of Saccharomyces strains on the quality of red wines aged on lees [J].
Loira, I. ;
Vejarano, R. ;
Morata, A. ;
Ricardo-da-Silva, J. M. ;
Laureano, O. ;
Gonzalez, M. C. ;
Suarez-Lepe, J. A. .
FOOD CHEMISTRY, 2013, 139 (1-4) :1044-1051
[8]   Synthesis and regulation of flavor compounds derived from brewing yeast: fusel alcohols [J].
Loviso, Claudia L. ;
Libkind, Diego .
REVISTA ARGENTINA DE MICROBIOLOGIA, 2019, 51 (04) :386-397
[9]   Synthesis and regulation of flavor compounds derived from brewing yeast: Esters [J].
Loviso, Claudia L. ;
Libkind, Diego .
REVISTA ARGENTINA DE MICROBIOLOGIA, 2018, 50 (04) :436-446
[10]   MODELING GROWTH AND OFF-FLAVORS PRODUCTION OF SPOILED BEER BACTERIA, PECTINATUS-FRISINGENSIS [J].
MEMBRE, JM ;
THOLOZAN, JL .
JOURNAL OF APPLIED BACTERIOLOGY, 1994, 77 (04) :456-460