A Beta basis function neural network in CMOS subthreshold mode

被引:2
|
作者
Samet, M
Masmoudi, M
Alimi, AM
机构
[1] Univ Sfax, Natl Sch Engineers Sfax, Dept Elect Engn, LETI Lab Elect & Informat Technol, Sfax 3038, Tunisia
[2] Univ Sfax, Natl Sch Engineers Sfax, Dept Elect Engn, REGIM Res Grp Intelligent Machines, Sfax 3038, Tunisia
关键词
D O I
10.1080/00207210110041489
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Beta basis function neural networks (BBFNNs) are powerful systems for learning and universal approximation. In this paper, we present a hardware implementation of the Beta neuron using the CMOS subthreshold mode. We describe the low power-low voltage analogue Beta neuron circuit. Three main modules are used to realize the electronic Beta function: a logarithmic current-to-voltage converter, a multiplier and an exponential voltage-to-current converter. Simulation results show the validity of our neural hardware implementation. The parameters of the electronic Beta function are controlled independently by current sources. This analogue implementation could be used easily to realize analogue BBFNNs.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 50 条
  • [21] Automatic Selection for the Beta Basis Function Neural Networks
    Dhahri, Habib
    Alimi, Adel
    NATURE INSPIRED COOPERATIVE STRATEGIES FOR OPTIMIZATION (NICSO 2007), 2008, 129 : 461 - 474
  • [22] Opposition-Based Particle Swarm Optimization for the Design of Beta Basis Function Neural Network
    Dhahri, Habib
    Alimi, Adel. M.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [23] A current-mode approach to CMOS neural network implementation
    Watanabe, K
    Wang, L
    Cha, HW
    Ogawa, S
    ICA(3)PP 97 - 1997 3RD INTERNATIONAL CONFERENCE ON ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, 1997, : 625 - 637
  • [24] Tunable Voltage-mode Subthreshold CMOS Neuron
    Ronchini, Margherita
    Zamani, Milad
    Farkhani, Hooman
    Moradi, Farshad
    2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 252 - 257
  • [25] A sigmoidal radial basis function neural network for function approximation
    Tsai, JR
    Chung, PC
    Chang, CI
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 496 - 501
  • [26] Design of analog subthreshold encoded neural network circuit in sub-100nm CMOS
    Larras, Benoit
    Lahuec, Cyril
    Seguin, Fabrice
    Arzel, Matthieu
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [27] Applications of a Neural Network Mode Indicator Function
    Lieven, NAJ
    Levin, RI
    Ratcliffe, MJ
    PROCEEDINGS OF THE 15TH INTERNATIONAL MODAL ANALYSIS CONFERENCE - IMAC, VOLS I AND II, 1997, 3089 : 857 - 862
  • [28] Design of Sliding Mode Controller based on Radial Basis Function Neural Network for Spacecraft Autonomous Proximity
    Jia, Jianfang
    Wang, Yongjun
    Yue, Hong
    IFAC PAPERSONLINE, 2023, 56 (02): : 2456 - +
  • [29] A High Order Sliding Mode Control Scheme Based on Adaptive Radial Basis Function Neural Network
    Tang, W. Q.
    Cai, Y. L.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 6343 - 6348
  • [30] Efficient classification algorithm and a new training mode for the adaptive radial basis function neural network equaliser
    Assaf, R.
    El Assad, S.
    Harkouss, Y.
    Zoaeter, M.
    IET COMMUNICATIONS, 2012, 6 (02) : 125 - 137