The N-Tuple Bandit Evolutionary Algorithm for Game Agent Optimisation
被引:22
作者:
Lucas, Simon M.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, EnglandQueen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
Lucas, Simon M.
[1
]
Liu, Jialin
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, EnglandQueen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
Liu, Jialin
[1
]
Perez-Liebana, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, EnglandQueen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
Perez-Liebana, Diego
[1
]
机构:
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
来源:
2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC)
|
2018年
关键词:
Estimation of Distribution Algorithm;
Evolutionary Algorithm;
Hyper-Parameter Optimisation;
Rolling Horizon Evolution;
Game Playing Agent;
Noisy Optimisation;
D O I:
10.1109/CEC.2018.8477869
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper describes the N-Tuple Bandit Evolutionary Algorithm (NTBEA), an optimisation algorithm developed for noisy and expensive discrete (combinatorial) optimisation problems. The algorithm is applied to two game-based hyperparameter optimisation problems. The N-Tuple system directly models the statistics, approximating the fitness and number of evaluations of each modelled combination of parameters. The model is simple, efficient and informative. Results show that the NTBEA significantly outperforms grid search and an estimation of distribution algorithm.