The N-Tuple Bandit Evolutionary Algorithm for Game Agent Optimisation

被引:22
作者
Lucas, Simon M. [1 ]
Liu, Jialin [1 ]
Perez-Liebana, Diego [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
来源
2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2018年
关键词
Estimation of Distribution Algorithm; Evolutionary Algorithm; Hyper-Parameter Optimisation; Rolling Horizon Evolution; Game Playing Agent; Noisy Optimisation;
D O I
10.1109/CEC.2018.8477869
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the N-Tuple Bandit Evolutionary Algorithm (NTBEA), an optimisation algorithm developed for noisy and expensive discrete (combinatorial) optimisation problems. The algorithm is applied to two game-based hyperparameter optimisation problems. The N-Tuple system directly models the statistics, approximating the fitness and number of evaluations of each modelled combination of parameters. The model is simple, efficient and informative. Results show that the NTBEA significantly outperforms grid search and an estimation of distribution algorithm.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 34 条
  • [1] [Anonymous], 2006, Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms
  • [2] [Anonymous], EV COMP CEC 2017 IEE
  • [3] [Anonymous], 2001, ESTIMATION DISTRIBUT
  • [4] [Anonymous], 2010, NEW FRONT DYN SPECTR
  • [5] [Anonymous], EUR C APPL EV COMP
  • [6] [Anonymous], 2016, ARXIV160306560
  • [7] [Anonymous], 2013, INT C MACH LEARN
  • [8] [Anonymous], TUT IEEE C COMP INT
  • [9] [Anonymous], COMP INT SSCI 2017 I
  • [10] [Anonymous], ADV NEURAL INF PROCE