Optimal trajectory planning and smoothing splines

被引:48
|
作者
Egerstedt, M [1 ]
Martin, CF
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
关键词
trajectory planning; linear systems; optimal control; splines;
D O I
10.1016/S0005-1098(01)00055-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, some of the relationships between optimal control and trajectory planning are examined. When planning trajectories for linear control systems, a demand that arises naturally in air traffic control or noise contaminated data interpolation is that the curve passes close to given points, or through intervals, at given times. In this paper, we produce these curves by solving an optimal control problem for linear control systems, while driving the output of the system close to the waypoints. We furthermore show how this optimal control problem reduces to a finite, quadratic programming problem, and we thus provide a constructive. yet theoretically sound framework for producing a rich set of curves called smoothing splines. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1057 / 1064
页数:8
相关论文
共 50 条
  • [1] Velocity and Acceleration Constrained Trajectory Planning by Smoothing Splines
    Kano, Hiroyuki
    Fujioka, Hiroyuki
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1167 - 1172
  • [2] Optimal constrained trajectory generation for quadrotors through smoothing splines
    Lai, Shupeng
    Lan, Menglu
    Chen, Ben M.
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 4743 - 4750
  • [3] Optimal trajectory planning with quintic G2-splines.
    Guarino Lo Bianco, C
    Piazzi, A
    PROCEEDINGS OF THE IEEE INTELLIGENT VEHICLES SYMPOSIUM 2000, 2000, : 620 - 625
  • [4] Optimal design for smoothing splines
    Holger Dette
    Viatcheslav B. Melas
    Andrey Pepelyshev
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 981 - 1003
  • [5] Optimal design for smoothing splines
    Dette, Holger
    Melas, Viatcheslav B.
    Pepelyshev, Andrey
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (05) : 981 - 1003
  • [6] Optimal smoothing and interpolating splines with constraints
    Kano, Hiroyuki
    Fujioka, Hiroyuki
    Martin, Clyde
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 1796 - 1801
  • [7] Optimal control and monotone smoothing splines
    Egerstedt, M
    Martin, C
    NEW TRENDS IN NONLINEAR DYNAMICS AND CONTROL, AND THEIR APPLICATIONS, 2003, 295 : 279 - 294
  • [8] Locally optimal adaptive smoothing splines
    Kim, Heeyoung
    Huo, Xiaoming
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (03) : 665 - 680
  • [9] Optimal smoothing and interpolating splines with constraints
    Kano, Hiroyuki
    Fujioka, Hiroyuki
    Martin, Clyde F.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1831 - 1844
  • [10] Constrained Smoothing Splines by Optimal Control
    Ikeda, Takuya
    Nagahara, Masaaki
    Chatterjee, Debasish
    Srikant, Sukumar
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1298 - 1303