High-integration and high-performance micro thermoelectric generator by femtosecond laser direct writing for self-powered IoT devices

被引:34
作者
Yu, Yuedong [1 ]
Guo, Zhanpeng [1 ]
Zhu, Wei [2 ,3 ,4 ]
Zhou, Jie [1 ]
Guo, Siming [1 ]
Wang, Yaling [1 ]
Deng, Yuan [2 ,4 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Res Inst Frontier Sci, Beijing 100083, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100083, Peoples R China
[4] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310052, Peoples R China
基金
国家重点研发计划;
关键词
Micro thermoelectric generator; Femtosecond laser direct writing; Heat and electrical transport optimization; Normalized output power density; Self-powered IoT devices; ENERGY; DESIGN; FABRICATION;
D O I
10.1016/j.nanoen.2021.106818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Astonishing advances in IoT devices are making a revolutionary progress on smart society, but requiring for sustainable micro power sources. Micro thermoelectric generators (mu TEGs) have the potential to power the IoT devices when incorporated into compact microcircuits. Nevertheless, the relatively low output of mu TEGs can hardly reach the rated power and voltage for practical use at present. Herein, a femtosecond laser direct writing method is proposed for the fabrication of mu TEGs with easy operation and good compatibility, and the precise adjustment of laser energy ensures a high-precision high aspect ratio pattern etch of thermoelectric films. The highly-integrated mu TEG (364 pairs/cm2) meets an excellent output of 494 mV and 0.514 mW cm-2 at Delta T = 33.1 K and an efficiency factor of 0.47 mu W cm-2 K-2. Eventually, it can realize an output of 3.3 V by using a power manager with the function of stabilizing and drive various electronic components, exhibiting a promising power source for self-powered IoT devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Micropelt miniaturized thermoelectric devices:: Small size, high cooling power densities, short response time
    Böttner, H
    [J]. ICT: 2005 24TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2005, : 1 - 8
  • [2] Bottner H., 2007, 26 INT C THERM, P4
  • [3] Development of an auto-interchangeable multi-pinhole array for confocal laser scanning microscopy systems using precision laser processing
    Boutilier, Richard M.
    Ahn, Yoon Joon
    Park, Jae Sung
    Lee, Ho
    [J]. OPTICS AND LASER TECHNOLOGY, 2019, 116 : 58 - 67
  • [4] Dispenser-printed planar thick-film thermoelectric energy generators
    Chen, A.
    Madan, D.
    Wright, P. K.
    Evans, J. W.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (10)
  • [5] Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
  • [6] Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices
    Chu, Jing
    Huang, Jian
    Liu, Ruiheng
    Liao, Jincheng
    Xia, Xugui
    Zhang, Qihao
    Wang, Chao
    Gu, Ming
    Bai, Shengqiang
    Shi, Xun
    Chen, Lidong
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power
    El Oualid, Soufiane
    Kosior, Francis
    Dauscher, Anne
    Candolfi, Christophe
    Span, Gerhard
    Mehmedovic, Ervin
    Paris, Janina
    Lenoir, Bertrand
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) : 3579 - 3591
  • [8] Bi2Te3-Based Flexible Micro Thermoelectric Generator With Optimized Design
    Glatz, Wulf
    Schwyter, Etienne
    Durrer, Lukas
    Hierold, Christofer
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (03) : 763 - 772
  • [9] On-chip array of thermoelectric Peltier microcoolers
    Goncalves, L. M.
    Rocha, J. G.
    Couto, C.
    Alpulim, P.
    Correia, J. H.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 (1-2) : 75 - 80
  • [10] Thermoelectric micro converters for cooling and energy-scavenging systems
    Goncalves, L. M.
    Couto, C.
    Alpuim, P.
    Correia, J. H.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (06)