How Does the Surface Structure of Pt-Ni Alloys Control Water and Hydrogen Peroxide Formation?

被引:11
作者
de Morais, Rodrigo Ferreira [1 ,2 ]
Franco, Alejandro A. [3 ,4 ,5 ,6 ]
Sautet, Philippe [1 ]
Loffreda, David [1 ]
机构
[1] Univ Lyon 1, Lab Chim, CNRS UMR 5182, Ens Lyon, F-69342 Lyon, France
[2] CEA, DRT LITEN DEHT LCPEM, 17 Rue Martyrs, F-38054 Grenoble 9, France
[3] Univ Picardie Jules Verne, LRCS, 33 Rue St Leu, F-80039 Amiens, France
[4] CNRS, UMR 7314, 33 Rue St Leu, F-80039 Amiens, France
[5] FR CNRS 3459, RS2E, F-80039 Amiens, France
[6] ALISTORE European Res Inst, F-80039 Amiens, France
来源
ACS CATALYSIS | 2016年 / 6卷 / 09期
关键词
catalytic water formation; density functional theory; free energy; activation energy; platinum; nickel; hydroxyl; hydrogen peroxide; OXYGEN REDUCTION REACTION; DENSITY-FUNCTIONAL THEORY; MONOLAYER ELECTROCATALYSTS; CHEMICAL DEGRADATION; ELECTRONIC-STRUCTURE; PT/NI(111) SURFACES; CATALYTIC-ACTIVITY; PLATINUM; METAL; PT3NI;
D O I
10.1021/acscatal.6b00842
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolyte membrane fuel cells have been studied for more than three decades as promising clean energy converters for automotive applications. However, improving their durability and reducing the catalyst cost (platinum loading) are ongoing challenges. Alloys are often proposed as an alternative solution which combines a good catalytic activity toward the oxygen reduction reaction and a decreased platinum content. In this work, we address density functional theory calculations for the formation of water and hydrogen peroxide on three different Pt3Ni(111) alloy model surfaces: bulk-truncated, Pt-skin, and Pt-skeleton terminations, in comparison with Pt(111). From a low-coverage Gibbs free energy analysis, the prediction of the activity order between all the catalysts agrees with electrochemical measurements: Pt-skin > Pt-skeleton > Pt(111) > bulk-truncated Pt3Ni(111). The superior activity of Pt-skin has been explained in terms of thermodynamic and kinetic properties and through an energy decomposition analysis. A strong loss of stability for atomic oxygen and a significant decrease of the barrier to form hydroxyl induce more competitive transformation routes on this surface. The intermediate activity of Pt-skeleton has been linked to similar thermodynamic properties (at least for OH formation) and a rather moderate lowering of the activation barriers of oxygen dissociation (morphology effect) and OH formation. Hence, the combined effects of coordination loss for surface Pt atoms (Pt skeleton) and the indirect effect of Ni (Pt-skin) are promoting the activity, with respect to Pt(111). In contrast, the direct effect from surface Ni atoms in the bulk-truncated surface is rather inhibiting. The expected selectivity to water is preferential, Pt skeleton being more selective than the three other surfaces.
引用
收藏
页码:5641 / 5650
页数:10
相关论文
共 62 条
  • [1] Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen
    Alayoglu, Selim
    Nilekar, Anand U.
    Mavrikakis, Manos
    Eichhorn, Bryan
    [J]. NATURE MATERIALS, 2008, 7 (04) : 333 - 338
  • [2] Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy
    Becknell, Nigel
    Kang, Yijin
    Chen, Chen
    Resasco, Joaquin
    Kornienko, Nikolay
    Guo, Jinghua
    Markovic, Nenad M.
    Somorjai, Gabor A.
    Stamenkovic, Vojislav R.
    Yang, Peidong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (50) : 15817 - 15824
  • [3] Scientific aspects of polymer electrolyte fuel cell durability and degradation
    Borup, Rod
    Meyers, Jeremy
    Pivovar, Bryan
    Kim, Yu Seung
    Mukundan, Rangachary
    Garland, Nancy
    Myers, Deborah
    Wilson, Mahlon
    Garzon, Fernando
    Wood, David
    Zelenay, Piotr
    More, Karren
    Stroh, Ken
    Zawodzinski, Tom
    Boncella, James
    McGrath, James E.
    Inaba, Minoru
    Miyatake, Kenji
    Hori, Michio
    Ota, Kenichiro
    Ogumi, Zempachi
    Miyata, Seizo
    Nishikata, Atsushi
    Siroma, Zyun
    Uchimoto, Yoshiharu
    Yasuda, Kazuaki
    Kimijima, Ken-ichi
    Iwashita, Norio
    [J]. CHEMICAL REVIEWS, 2007, 107 (10) : 3904 - 3951
  • [4] Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
    Calle-Vallejo, Federico
    Tymoczko, Jakub
    Colic, Viktor
    Vu, Quang Huy
    Pohl, Marcus D.
    Morgenstern, Karina
    Loffreda, David
    Sautet, Philippe
    Schuhmann, Wolfgang
    Bandarenka, Aliaksandr S.
    [J]. SCIENCE, 2015, 350 (6257) : 185 - 189
  • [5] Calle-Vallejo F, 2015, NAT CHEM, V7, P403, DOI [10.1038/NCHEM.2226, 10.1038/nchem.2226]
  • [6] Theoretical analysis of reactivity on Pt(111) and Pt-Pd(111) alloys
    Calvo, Sergio R.
    Balbuena, Perla B.
    [J]. SURFACE SCIENCE, 2007, 601 (21) : 4786 - 4792
  • [7] Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces
    Chen, Chen
    Kang, Yijin
    Huo, Ziyang
    Zhu, Zhongwei
    Huang, Wenyu
    Xin, Huolin L.
    Snyder, Joshua D.
    Li, Dongguo
    Herron, Jeffrey A.
    Mavrikakis, Manos
    Chi, Miaofang
    More, Karren L.
    Li, Yadong
    Markovic, Nenad M.
    Somorjai, Gabor A.
    Yang, Peidong
    Stamenkovic, Vojislav R.
    [J]. SCIENCE, 2014, 343 (6177) : 1339 - 1343
  • [8] Coulon R., 2009, ECS T, V25, P259
  • [9] Coverage-dependent thermodynamic analysis of the formation of water and hydrogen peroxide on a platinum model catalyst
    de Morais, Rodrigo Ferreira
    Franco, Alejandro A.
    Sautet, Philippe
    Loffreda, David
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (17) : 11392 - 11400
  • [10] Interplay between Reaction Mechanism and Hydroxyl Species for Water Formation on Pt(111)
    de Morais, Rodrigo Ferreira
    Franco, Alejandro A.
    Sautet, Philippe
    Loffreda, David
    [J]. ACS CATALYSIS, 2015, 5 (02): : 1068 - 1077