Data-Driven Understanding of Computational Thinking Assessment: A Systematic Literature Review

被引:1
|
作者
Shabihi, Negar [1 ]
Kim, Mi Song [1 ]
机构
[1] Educ Fac, London, ON, Canada
来源
PROCEEDINGS OF THE 20TH EUROPEAN CONFERENCE ON E-LEARNING (ECEL 2021) | 2021年
关键词
computational thinking (CT); assessment; topic modelling; machine learning; data-driven; new media; SCIENCE; KNOWLEDGE; ATTITUDE;
D O I
10.34190/EEL.21.115
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A movement to include problem-solving and computer science in k-12 education has sparked significant interest in introducing computational thinking (CT). CT education is mainly defined as teaching and learning problem-solving skills. CT is considered a 21-century skill, and like other essential skills aiming to educate students as efficient members of the technology-dependent society, CT learning and assessment are associated with the use of technology-enhanced learning methods and environments. Although most researchers categorize CT skills into three groups, including CT concepts, practices, and perspectives, there is no consensus view regarding CT assessment methods to evaluate these three CT skill categories. Addressing this gap, we explored key topics in the computational thinking assessment (CTA) literature using a data-driven approach for topic modeling. We analyzed 395 articles in CTA literature and identified 11 research topics of CTA. We also performed a network analysis to explore the key links between CTA's identified topics. Based on the results from topic modeling, we presented CTA methods and categorized the assessment tools based on their assessment strategy and the types of CT skills they aim to evaluate. Also, the paper analyzes the identified assessment methods based on the purpose of assessment and the different types of insights they provide for the evaluation of CT skills. The paper discusses the advantages of new forms of CTA through technology compared to traditional assessment methods and provides recommendations for further studies.
引用
收藏
页码:635 / 643
页数:9
相关论文
共 50 条
  • [31] Data-Driven Computational Social Science: A Survey
    Zhang, Jun
    Wang, Wei
    Xia, Feng
    Lin, Yu-Ru
    Tong, Hanghang
    BIG DATA RESEARCH, 2020, 21
  • [32] Identification of Problem-Solving Techniques in Computational Thinking Studies: Systematic Literature Review
    Wu, Ting-Ting
    Asmara, Andik
    Huang, Yueh-Min
    Permata Hapsari, Intan
    SAGE OPEN, 2024, 14 (02):
  • [33] Error Quantification for the Assessment of Data-Driven Turbulence Models
    James Hammond
    Yuri Frey Marioni
    Francesco Montomoli
    Flow, Turbulence and Combustion, 2022, 109 : 1 - 26
  • [34] Error Quantification for the Assessment of Data-Driven Turbulence Models
    Hammond, James
    Marioni, Yuri Frey
    Montomoli, Francesco
    FLOW TURBULENCE AND COMBUSTION, 2022, 109 (01) : 1 - 26
  • [35] Review on Data-driven Power System Transient Stability Assessment Technology
    Fan S.
    Zhao Z.
    Guo J.
    Ma S.
    Wang T.
    Li D.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (09): : 3408 - 3428
  • [36] Understanding climate phenomena with data-driven models
    Knuesel, Benedikt
    Baumberger, Christoph
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2020, 84 : 46 - 56
  • [37] A Review of Data-Driven Methods for Power Flow Analysis
    Akter, Mahmuda
    Nazaripouya, Hamidreza
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [38] Data-driven machinery fault diagnosis: A comprehensive review
    Neupane, Dhiraj
    Bouadjenek, Mohamed Reda
    Dazeley, Richard
    Aryal, Sunil
    NEUROCOMPUTING, 2025, 627
  • [39] Data-Driven Fault Diagnosis for Electric Drives: A Review
    Gonzalez-Jimenez, David
    del-Olmo, Jon
    Poza, Javier
    Garramiola, Fernando
    Madina, Patxi
    SENSORS, 2021, 21 (12)
  • [40] Data-driven manufacturing sustainability assessment
    Zhang X.
    Chen J.
    Wang Y.
    Zhang H.
    Jiang Z.
    Cai W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2329 - 2342