Kendall distribution functions

被引:68
作者
Nelsen, RB [1 ]
Quesada-Molina, JJ
Rodríguez-Lallena, JA
Ubeda-Flores, M
机构
[1] Lewis & Clark Coll, Dept Math Sci, Portland, OR 97219 USA
[2] Univ Granada, Dept Matemat Aplicada, Granada, Spain
[3] Univ Almeria, Dept Estadist & Matemat Aplicada, Almeria, Spain
关键词
copulas; distribution functions; Kendall's tau; stochastic orderings;
D O I
10.1016/j.spl.2003.08.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
If X and Y are continuous random variables with joint distribution function H, then the Kendall distribution function of (X, Y) is the distribution function of the random variable H(X, Y). Kendall distribution functions arise in the study of stochastic orderings of random vectors. In this paper we study various properties of Kendall distribution functions for both populations and samples. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 10 条
[1]  
AVEROUS J, 2002, DEPENDENCE ARCHIMEDE
[2]  
Bertino S., 1977, METRON, V35, P53
[3]  
Caperaa P, 1997, DISTRIBUTIONS WITH GIVEN MARGINALS AND MOMENT PROBLEMS, P81
[4]  
FLORES U, 2001, THESIS U ALMERIA SPA
[5]  
Fredricks GA, 2002, DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, P81
[6]   On the multivariate probability integral transformation [J].
Genest, C ;
Rivest, LP .
STATISTICS & PROBABILITY LETTERS, 2001, 53 (04) :391-399
[7]   STATISTICAL-INFERENCE PROCEDURES FOR BIVARIATE ARCHIMEDEAN COPULAS [J].
GENEST, C ;
RIVEST, LP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :1034-1043
[8]  
Nelsen R. B., 1999, INTRO COPULAS
[9]   Distribution functions of copulas:: a class of bivariate probability integral transforms [J].
Nelsen, RB ;
Quesada-Molina, JJ ;
Rodríguez-Lallena, JA ;
Ubeda-Flores, M .
STATISTICS & PROBABILITY LETTERS, 2001, 54 (03) :277-282
[10]  
Sklar A., 1959, PUBL I STAT U PARIS, V8, P229