Hardy-Steklov Integral Operators: Part II

被引:3
|
作者
Prokhorov, D. V. [1 ]
Stepanov, V. D. [1 ]
Ushakova, E. P. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
WEIGHTED NORM INEQUALITIES; APPROXIMATION NUMBERS; BOUNDEDNESS; CRITERIA; SPECTRUM;
D O I
10.1134/S0081543818070015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:S1 / S61
页数:61
相关论文
共 50 条
  • [31] ON THE COMPACTNESS OF COMMUTATORS OF HARDY OPERATORS
    Shi, Shaoguang
    Fu, Zunwei
    Lu, Shanzhen
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 307 (01) : 239 - 256
  • [32] HARDY-LITTLEWOOD, BESSEL-RIESZ, AND FRACTIONAL INTEGRAL OPERATORS IN ANISOTROPIC MORREY AND CAMPANATO SPACES
    Ruzhansky, Michael
    Suragan, Durvudkhan
    Yessirkegenov, Nurgissa
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 577 - 612
  • [33] Weak Type Estimate of Singular Integral Operators on Variable Weak Herz-Type Hardy Spaces
    Boulares, H. B.
    Drihem, D.
    Hebbache, W.
    ARMENIAN JOURNAL OF MATHEMATICS, 2023, 15 (03): : 1 - 33
  • [34] Endpoint Estimates for Fractional Hardy Operators and Their Commutators on Hardy Spaces
    Zhou, Jiang
    Wang, Dinghuai
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [35] Synchronization Analysis of Multiple Integral Inequalities Driven by Steklov Operator
    Albalawi, Wedad
    Khan, Zareen A.
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [36] Estimates for the approximation numbers of one class of integral operators. II
    Lomakina, EN
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (02) : 298 - 310
  • [37] A geometric method for solving a series of integral Poincaré-Steklov equations
    A. B. Bogatyre
    Mathematical Notes, 1998, 63 : 302 - 310
  • [38] Estimates for the Approximation Numbers of One Class of Integral Operators. II
    E. N. Lomakina
    Siberian Mathematical Journal, 2003, 44 : 298 - 310
  • [39] ON ITERATED DISCRETE HARDY TYPE OPERATORS
    Kalybay, Aigerim
    Zhangabergenova, Nazerke
    OPERATORS AND MATRICES, 2023, 17 (01): : 79 - 91
  • [40] ON THE STEKLOV PROBLEM IN A DOMAIN PERFORATED ALONG A PART OF THE BOUNDARY
    Chechkin, Gregory A.
    Gadyl'shin, Rustem R.
    D'Apice, Ciro
    De Maio, Umberto
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (04): : 1317 - 1342