Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization

被引:48
作者
Cao, Yan [1 ]
He, Zongxing [1 ]
Chen, Qimingxing [1 ]
He, Xiaoyan [1 ]
Su, Lili [1 ]
Yu, Wenxia [1 ]
Zhang, Mingming [2 ]
Yang, Huiying [3 ]
Huang, Xingxu [1 ]
Li, Jianfeng [1 ]
机构
[1] ShanghaiTech Univ, Gene Editing Ctr, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Organ Chem, Interdisciplinary Res Ctr Biol & Chem, Shanghai 201210, Peoples R China
[3] Fudan Univ, Huashan Hosp, Dept Pharm, Shanghai 200040, Peoples R China
关键词
stability; lung-specific; five-element nanoparticles; poly(beta-amino esters); lyophilization; LIPID NANOPARTICLES; TREHALOSE; EFFICACY;
D O I
10.1021/acs.nanolett.2c01784
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid nanoparticles (LNPs) carrying therapeutic mRNAs hold great promise in treating lung-associated diseases like viral infections, tumors, and genetic disorders. However, because of their thermodynamically unstable nature, traditional LNPs carrying mRNAs need to be stored at low temperatures, which hinders their prevalence. Herein, an efficient lung-specific mRNA delivery platform named five-element nanoparticles (FNPs) is developed in which helper-polymer poly(beta-amino esters) (PBAEs) and DOTAP are used in combination. The new strategy endows FNPs with high stability by increasing the charge repulsion between nanoparticles and the binding force of the aliphatic chains within the nanoparticles. The structure-activity relationship (SAR) shows that PBAEs with E1 end-caps, higher degrees of polymerization, and longer alkyl side chains exhibit higher hit rates. Lyophilized FNP formulations can be stably stored at 4 degrees C for at least 6 months. Overall, a novel delivery platform with high efficiency, specificity, and stability was developed for advancing mRNA-based therapies for lung-associated diseases.
引用
收藏
页码:6580 / 6589
页数:10
相关论文
共 50 条
[1]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[2]   Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization [J].
Ball, Rebecca L. ;
Bajaj, Palak ;
Whitehead, Kathryn A. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 :305-315
[3]   Messenger RNA therapy for rare genetic metabolic diseases [J].
Berraondo, Pedro ;
Martini, Paolo G. V. ;
Avila, Matias A. ;
Fontanellas, Antonio .
GUT, 2019, 68 (07) :1323-1330
[4]   A Novel Assay for Quantifying the Number of Plasmids Encapsulated by Polymer Nanoparticles [J].
Bhise, Nupura S. ;
Shmueli, Ron B. ;
Gonzalez, Jose ;
Green, Jordan J. .
SMALL, 2012, 8 (03) :367-373
[5]   Selective Targeting Capability Acquired with a Protein Corona Adsorbed on the Surface of 1,2-Dioleoyl-3-trimethylammonium Propane/DNA Nanoparticles [J].
Caracciolo, Giulio ;
Cardarelli, Francesco ;
Pozzi, Daniela ;
Salomone, Fabrizio ;
Maccari, Giuseppe ;
Bardi, Giuseppe ;
Capriotti, Anna Laura ;
Cavaliere, Chiara ;
Papi, Massimiliano ;
Lagana, Aldo .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (24) :13171-13179
[6]   An overview of liposome lyophilization and its future potential [J].
Chen, Chengjun ;
Han, Dandan ;
Cai, Cuifang ;
Tang, Xing .
JOURNAL OF CONTROLLED RELEASE, 2010, 142 (03) :299-311
[7]   The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models [J].
Chen, Dongyu ;
Parayath, Neha ;
Ganesh, Shanthi ;
Wang, Weimin ;
Amiji, Mansoor .
NANOSCALE, 2019, 11 (40) :18806-18824
[8]   Poly(beta-amino ester)-Based Nanoparticles Enable Nonviral Delivery of Base Editors for Targeted Tumor Gene Editing [J].
Chen, Qimingxing ;
Su, Lili ;
He, Xiaoyan ;
Li, Jinwei ;
Cao, Yan ;
Wu, Qingxia ;
Qin, Jianchao ;
He, Zongxing ;
Huang, Xingxu ;
Yang, Huiying ;
Li, Jianfeng .
BIOMACROMOLECULES, 2022, 23 (05) :2116-2125
[9]   Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing [J].
Cheng, Qiang ;
Wei, Tuo ;
Farbiak, Lukas ;
Johnson, Lindsay T. ;
Dilliard, Sean A. ;
Siegwart, Daniel J. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :313-+
[10]   Addressing the Cold Reality of mRNA Vaccine Stability [J].
Crommelin, Daan J. A. ;
Anchordoquy, Thomas J. ;
Volkin, David B. ;
Jiskoot, Wim ;
Mastrobattista, Enrico .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 110 (03) :997-1001