Meshless local Petrov-Galerkin method for stress and crack analysis in 3-D axisymmetric FGM bodies

被引:0
|
作者
Sladek, J [1 ]
Sladek, V
Krivacek, J
Zhang, C
机构
[1] Slovak Acad Sci, Inst Construct & Architecture, Bratislava 84503, Slovakia
[2] Univ Siegen, Dept Civil Engn, D-57068 Siegen, Germany
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2005年 / 8卷 / 03期
关键词
meshless method; local weak-form; unit step function; moving least-squares approximation; Laplace-transform; functionally graded materials (FGMs); transient elastodynamics; crack problems;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A meshless method based on the local Petrov-Galerkin approach is presented for stress analysis in three-dimensional (3-d) axisymmetric linear elastic solids with continuously varying material properties. The inertial effects are considered in dynamic problems. A unit step function is used as the test functions in the local weak-form. It is leading to local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace-transform technique is applied and the LBIEs are given in the Laplace-transformed domain. Axial symmetry of the geometry and the boundary conditions for a 3-d linear elastic solid reduces the original 3-d boundary value problem into a 2-d problem. The geometry of subdomains is selected as a toroid with a circular cross section in the considered (x(1),x(3))-plane. The final form of the local integral equations has a pure contour-integral character only in elastostatic problems. In elastodynamics an additional domain-integral is involved due to inertia terms. The moving least-squares (MLS) method is used for the approximation of physical quantities in LBEEs.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 50 条
  • [1] Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method
    Sladek, J.
    Sladek, V.
    Hellmich, Ch.
    Eberhardsteiner, J.
    COMPUTATIONAL MECHANICS, 2007, 39 (03) : 323 - 333
  • [2] Heat Conduction Analysis of 3-D Axisymmetric and Anisotropic FGM Bodies by Meshless Local Petrov–Galerkin Method
    J. Sladek
    V. Sladek
    Ch. Hellmich
    J. Eberhardsteiner
    Computational Mechanics, 2007, 39 : 323 - 333
  • [3] Analysis of axisymmetric elasticity problems using the meshless local Petrov-Galerkin method
    Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan 410076, China
    Yang, J.-J. (yangjianjun01@126.com), 1600, Tsinghua University (29):
  • [4] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [5] Axisymmetric Electromagnetic Resonant Cavity Solution by a Meshless Local Petrov-Galerkin Method
    Soares, Ramon D.
    Mesquita, Renato C.
    Moreira, Fernando J. S.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2011, 26 (10): : 792 - 799
  • [6] Meshless Local Petrov-Galerkin Method for Heat Transfer Analysis
    Rao, Singiresu S.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8A, 2014,
  • [7] Direct meshless local Petrov-Galerkin method for elastodynamic analysis
    Mirzaei, Davoud
    Hasanpour, Kourosh
    ACTA MECHANICA, 2016, 227 (03) : 619 - 632
  • [8] Meshless local Petrov-Galerkin method for large deformation analysis
    Xiong, Yuan-Bo
    Cui, Hong-Xue
    Long, Shu-Yao
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2009, 26 (03): : 353 - 357
  • [9] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [10] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117