Wkb method for the Dirac equation with a scalar-vector coupling

被引:19
作者
Lazur, VY [1 ]
Reity, OK [1 ]
Rubish, VV [1 ]
机构
[1] Uzhgorod Natl Univ, Uzhgorod, Ukraine
关键词
Dirac equation; Lorentz structure of interaction potential; WKB method; effective potential; quantization condition; level width; potential models;
D O I
10.1007/s11232-005-0090-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We outline a recursive method for obtaining WKB expansions of solutions of the Dirac equation in an external centrally symmetric field with a scalar-vector Lorentz structure of the interaction potentials. We obtain semiclassical formulas for radial functions in the classically allowed and forbidden regions and find conditions for matching them in passing through the turning points. We generalize the Bohr-Sommerfeld quantization rule to the relativistic case where a spin-1/2 particle interacts simultaneously with a scalar and an electrostatic external held. We obtain a general expression in the semiclassical approximation for the width of quasistationary levels, which was earlier known only for barrier-type electrostatic potentials (the Gamow formula). We show that the obtained quantization rule exactly produces the energy spectrum for Coulomb- and oscillatory-type potentials. We use an example of the funnel potential to demonstrate that the proposed version of the WKB method not only extends the possibilities for studying the spectrum of energies and wave functions analytically but also ensures an appropriate accuracy of calculations even for states with n(r) similar to 1.
引用
收藏
页码:559 / 582
页数:24
相关论文
共 73 条
[1]   OBSERVATION OF ORBITALLY EXCITED B-MESONS [J].
ABREU, P ;
ADAM, W ;
ADYE, T ;
AGASI, E ;
AJINENKO, I ;
ALEKSAN, R ;
ALEKSEEV, GD ;
ALLPORT, PP ;
ALMEHED, S ;
ALMEIDA, FML ;
ALVSVAAG, SJ ;
AMALDI, U ;
AMATO, S ;
ANDREAZZA, A ;
ANDRIEUX, ML ;
ANTILOGUS, P ;
APEL, WD ;
ARNOUD, Y ;
ASMAN, B ;
AUGUSTIN, JE ;
AUGUSTINUS, A ;
BAILLON, P ;
BAMBADE, P ;
BARAO, F ;
BARATE, R ;
BARBIELLINI, G ;
BARDIN, DY ;
BARKER, GJ ;
BARONCELLI, A ;
BARRING, O ;
BARRIO, JA ;
BARTL, W ;
BATES, MJ ;
BATTAGLIA, M ;
BAUBILLIER, M ;
BAUDOT, J ;
BECKS, KH ;
BEGALLI, M ;
BEILLIERE, P ;
BELOKOPYTOV, Y ;
BELTRAN, P ;
BENVENUTI, AC ;
BERGGREN, M ;
BERTRAND, D ;
BIANCHI, F ;
BIGI, M ;
BILENKY, MS ;
BILLOIR, P ;
BJARNE, J ;
BLOCH, D .
PHYSICS LETTERS B, 1995, 345 (04) :598-608
[2]   Experimental evidence for a light and broad scalar resonance in D+ → π-π+π+ decay [J].
Aitala, EM ;
Amato, S ;
Anjos, JC ;
Appel, JA ;
Ashery, D ;
Banerjee, S ;
Bediaga, I ;
Blaylock, G ;
Bracker, SB ;
Burchat, PR ;
Burnstein, RA ;
Carter, T ;
Carvalho, HS ;
Copty, NK ;
Cremaldi, LM ;
Darling, C ;
Denisenko, K ;
Devmal, S ;
Fernandez, A ;
Fox, GE ;
Gagnon, P ;
Gobel, C ;
Gounder, K ;
Halling, AM ;
Herrera, G ;
Hurvits, G ;
James, C ;
Kasper, PA ;
Kwan, S ;
Langs, DC ;
Leslie, J ;
Lundberg, B ;
Magnin, J ;
Massafferri, A ;
MayTal-Beck, S ;
Meadows, B ;
Neto, JRTD ;
Mihalcea, D ;
Milburn, RH ;
de Miranda, JM ;
Napier, A ;
Nguyen, A ;
d'Oliveira, AB ;
O'Shaughnessy, K ;
Peng, KC ;
Perera, LP ;
Purohit, MV ;
Quinn, B ;
Radeztsky, S ;
Rafatian, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :770-774
[3]  
Akhiezer A I, 1962, ELEMENTS QUANTUM ELE
[4]   Investigation of semileptonic B meson decays to p-wave charm mesons [J].
Anastassov, A ;
Duboscq, JE ;
Fujino, D ;
Gan, KK ;
Hart, T ;
Honscheid, K ;
Kagan, H ;
Kass, R ;
Lee, J ;
Spencer, MB ;
Sung, M ;
Undrus, A ;
Wanke, R ;
Wolf, A ;
Zoeller, MM ;
Nemati, B ;
Richichi, SJ ;
Ross, WR ;
Skubic, P ;
Bishai, M ;
Fast, J ;
Hinson, JW ;
Menon, N ;
Miller, DH ;
Shibata, EI ;
Shipsey, IPJ ;
Yurko, M ;
Glenn, S ;
Johnson, SD ;
Kwon, Y ;
Roberts, S ;
Thorndike, EH ;
Jessop, CP ;
Lingel, K ;
Marsiske, H ;
Perl, ML ;
Savinov, V ;
Ugolini, D ;
Wang, R ;
Zhou, X ;
Coan, TE ;
Fadeyev, V ;
Korolkov, I ;
Maravin, Y ;
Narsky, I ;
Shelkov, V ;
Staeck, J ;
Stroynowski, R ;
Volobouev, I ;
Ye, J .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4127-4131
[5]  
[Anonymous], 1990, RELATIVISTIC QUANTUM
[6]   Quantal two-center Coulomb problem treated by means of the phase-integral method.: II.: Quantization conditions in the symmetric case expressed in terms of complete elliptic integrals.: Numerical illustration [J].
Athavan, N ;
Lakshmanan, M ;
Fröman, N .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (11) :5077-5095
[7]   Quantal two-center Coulomb problem treated by means of the phase-integral method.: I.: General theory [J].
Athavan, N ;
Fröman, PO ;
Fröman, N ;
Lakshmanan, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (11) :5051-5076
[8]   Quantal two-center Coulomb problem treated by means of the phase-integral method.: III.: Quantization conditions in the general case expressed in terms of complete elliptic integrals.: Numerical illustration [J].
Athavan, N ;
Lakshmanan, M ;
Fröman, N .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (11) :5096-5115
[9]  
Bateman H., 1955, Higher Transcendental Functions
[10]  
Baz A. I., 1969, Scattering, reactions and decay in nonrelativistic quantum mechanics