Universum Principal Component Analysis

被引:0
|
作者
Chen, Xiao-hong [1 ]
Ma, Di [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
来源
INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING (ITME 2014) | 2014年
关键词
Dimensionality reduction; Universum learning; Principal component analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a novel dimensionality reduction method is developed based on both the principal component analysis (PCA) and Universum learning. PCA works on the target data, ignoring the Universum-do not belong to either class of interest, may contain useful prior knowledge in the same domain as the problem at hand, which has been proved to be helpful in classification and clustering. The proposed method projects target data and Universum into two orthogonal complement spaces with the aim of minimizing the reconstruct error respectively, thus named as universum principal component analysis (UPCA). Experimental results on the UCI datasets and USPS datasets show its effectiveness compared to traditional PCA.
引用
收藏
页码:236 / 241
页数:6
相关论文
共 50 条
  • [1] Decomposable Principal Component Analysis
    Wiesel, Ami
    Hero, Alfred O.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) : 4369 - 4377
  • [2] Ensemble Principal Component Analysis
    Dorabiala, Olga
    Aravkin, Aleksandr Y.
    Kutz, J. Nathan
    IEEE ACCESS, 2024, 12 : 6663 - 6671
  • [4] Automatic sparse principal component analysis
    Park, Heewon
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 678 - 697
  • [5] Global Modular Principal Component Analysis
    Kadappa, Vijayakumar
    Negi, Atul
    SIGNAL PROCESSING, 2014, 105 : 381 - 388
  • [6] Pivotal-Aware Principal Component Analysis
    Li, Xuelong
    Li, Pei
    Zhang, Hongyuan
    Zhu, Kangjia
    Zhang, Rui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12201 - 12210
  • [7] Information theory divergences in principal component analysis
    Nakao, Eduardo K.
    Levada, Alexandre L. M.
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [8] Principal Component Analysis in Business Intelligence Applications
    Sevcenco, Ana-Maria
    Li, Kin Fun
    2013 EIGHTH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC 2013), 2013, : 399 - 404
  • [9] A Reconfigurable Hardware Architecture for Principal Component Analysis
    Korat, Uday A.
    Alimohammad, Amirhossein
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (05) : 2097 - 2113
  • [10] Generalized mean for robust principal component analysis
    Oh, Jiyong
    Kwak, Nojun
    PATTERN RECOGNITION, 2016, 54 : 116 - 127