Prognosis of Alzheimer's Disease Using Quantitative Mass Spectrometry of Human Blood Plasma Proteins and Machine Learning

被引:14
作者
Kononikhin, Alexey S. [1 ]
Zakharova, Natalia, V [2 ]
Semenov, Savva D. [3 ]
Bugrova, Anna E. [1 ,2 ]
Brzhozovskiy, Alexander G. [1 ]
Indeykina, Maria I. [1 ,2 ]
Fedorova, Yana B. [4 ]
Kolykhalov, Igor, V [4 ]
Strelnikova, Polina A. [2 ,3 ]
Ikonnikova, Anna Yu [5 ]
Gryadunov, Dmitry A. [5 ]
Gavrilova, Svetlana, I [4 ]
Nikolaev, Evgeny N. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Ctr Mol & Cellular Biol, Moscow 121205, Russia
[2] Russian Acad Sci, Emanuel Inst Biochem Phys, Moscow 119334, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[4] Mental Hlth Res Ctr, Moscow 115522, Russia
[5] Russian Acad Sci, Engelhardt Inst Mol Biol, Ctr Precis Genome Editing & Genet Technol Biomed, Moscow 119991, Russia
关键词
targeted proteomics; mass spectrometry; Alzheimer's disease; multiple reaction monitoring; machine learning; MILD COGNITIVE IMPAIRMENT; CEREBROSPINAL-FLUID; AMYLOID-BETA; BIOMARKERS; DEMENTIA; PREDICTION; DIAGNOSIS; SCALE; PROGRESSION; CONVERSION;
D O I
10.3390/ijms23147907
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Early recognition of the risk of Alzheimer's disease (AD) onset is a global challenge that requires the development of reliable and affordable screening methods for wide-scale application. Proteomic studies of blood plasma are of particular relevance; however, the currently proposed differentiating markers are poorly consistent. The targeted quantitative multiple reaction monitoring (MRM) assay of the reported candidate biomarkers (CBs) can contribute to the creation of a consistent marker panel. An MRM-MS analysis of 149 nondepleted EDTA-plasma samples (MHRC, Russia) of patients with AD (n = 47), mild cognitive impairment (MCI, n = 36), vascular dementia (n = 8), frontotemporal dementia (n = 15), and an elderly control group (n = 43) was performed using the BAK 125 kit (MRM Proteomics Inc., Canada). Statistical analysis revealed a significant decrease in the levels of afamin, apolipoprotein E, biotinidase, and serum paraoxonase/arylesterase 1 associated with AD. Different training algorithms for machine learning were performed to identify the protein panels and build corresponding classifiers for the AD prognosis. Machine learning revealed 31 proteins that are important for AD differentiation and mostly include reported earlier CBs. The best-performing classifiers reached 80% accuracy, 79.4% sensitivity and 83.6% specificity and were able to assess the risk of developing AD over the next 3 years for patients with MCI. Overall, this study demonstrates the high potential of the MRM approach combined with machine learning to confirm the significance of previously identified CBs and to propose consistent protein marker panels.
引用
收藏
页数:17
相关论文
共 83 条
[71]   Systemic Inflammation Is Associated with MCI and Its Subtypes: The Sydney Memory and Aging Study [J].
Trollor, Julian N. ;
Smith, Evelyn ;
Baune, Bernhard T. ;
Kochan, Nicole A. ;
Campbell, Lesley ;
Samaras, Katherine ;
Crawford, John ;
Brodaty, Henry ;
Sachdev, Perminder .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2010, 30 (06) :569-578
[72]  
Tyanova S, 2016, NAT METHODS, V13, P731, DOI [10.1038/nmeth.3901, 10.1038/NMETH.3901]
[73]   SciPy 1.0: fundamental algorithms for scientific computing in Python']Python [J].
Virtanen, Pauli ;
Gommers, Ralf ;
Oliphant, Travis E. ;
Haberland, Matt ;
Reddy, Tyler ;
Cournapeau, David ;
Burovski, Evgeni ;
Peterson, Pearu ;
Weckesser, Warren ;
Bright, Jonathan ;
van der Walt, Stefan J. ;
Brett, Matthew ;
Wilson, Joshua ;
Millman, K. Jarrod ;
Mayorov, Nikolay ;
Nelson, Andrew R. J. ;
Jones, Eric ;
Kern, Robert ;
Larson, Eric ;
Carey, C. J. ;
Polat, Ilhan ;
Feng, Yu ;
Moore, Eric W. ;
VanderPlas, Jake ;
Laxalde, Denis ;
Perktold, Josef ;
Cimrman, Robert ;
Henriksen, Ian ;
Quintero, E. A. ;
Harris, Charles R. ;
Archibald, Anne M. ;
Ribeiro, Antonio H. ;
Pedregosa, Fabian ;
van Mulbregt, Paul .
NATURE METHODS, 2020, 17 (03) :261-272
[74]   Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk [J].
Walker, Keenan A. ;
Chen, Jingsha ;
Zhang, Jingning ;
Fornage, Myriam ;
Yang, Yunju ;
Zhou, Linda ;
Grams, Morgan E. ;
Tin, Adrienne ;
Daya, Natalie ;
Hoogeveen, Ron C. ;
Wu, Aozhou ;
Sullivan, Kevin J. ;
Ganz, Peter ;
Zeger, Scott L. ;
Gudmundsson, Elias F. ;
Emilsson, Valur ;
Launer, Lenore J. ;
Jennings, Lori L. ;
Gudnason, Vilmundur ;
Chatterjee, Nilanjan ;
Gottesman, Rebecca F. ;
Mosley, Thomas H. ;
Boerwinkle, Eric ;
Ballantyne, Christie M. ;
Coresh, Josef .
NATURE AGING, 2021, 1 (05) :473-+
[75]  
Waskom M.L., 2021, Journal of OpenSource Software, V6, P3021, DOI DOI 10.21105/JOSS.03021
[76]   Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease [J].
Whelan, Christopher D. ;
Mattsson, Niklas ;
Nagle, Michael W. ;
Vijayaraghavan, Swetha ;
Hyde, Craig ;
Janelidze, Shorena ;
Stomrud, Erik ;
Lee, Julie ;
Fitz, Lori ;
Samad, Tarek A. ;
Ramaswamy, Gayathri ;
Margolin, Richard A. ;
Malarstig, Anders ;
Hansson, Oskar .
ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2019, 7 (01)
[77]  
World Health Organisation, 1992, ICD 10 CLASSIFICATIO
[78]   Amelioration of Alzheimer's disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow [J].
Xie, Chenglong ;
Zhuang, Xu-Xu ;
Niu, Zhangming ;
Ai, Ruixue ;
Lautrup, Sofie ;
Zheng, Shuangjia ;
Jiang, Yinghui ;
Han, Ruiyu ;
Sen Gupta, Tanima ;
Cao, Shuqin ;
Lagartos-Donate, Maria Jose ;
Cai, Cui-Zan ;
Xie, Li-Ming ;
Caponio, Domenica ;
Wang, Wen-Wen ;
Schmauck-Medina, Tomas ;
Zhang, Jianying ;
Wang, He-ling ;
Lou, Guofeng ;
Xiao, Xianglu ;
Zheng, Wenhua ;
Palikaras, Konstantinos ;
Yang, Guang ;
Caldwell, Kim A. ;
Caldwell, Guy A. ;
Shen, Han-Ming ;
Nilsen, Hilde ;
Lu, Jia-Hong ;
Fang, Evandro F. .
NATURE BIOMEDICAL ENGINEERING, 2022, 6 (01) :76-+
[79]   A non-invasive, rapid method to genotype late-onset Alzheimer's disease-related apolipoprotein E gene polymorphisms [J].
Yi, Li ;
Wu, Ting ;
Luo, Wenyuan ;
Zhou, Wen ;
Wu, Jun .
NEURAL REGENERATION RESEARCH, 2014, 9 (01) :69-75
[80]   Serum Protein-Based Profiles as Novel Biomarkers for the Diagnosis of Alzheimer's Disease [J].
Yu, Shu ;
Liu, Yue-Ping ;
Liu, Hai-Liang ;
Li, Jie ;
Xiang, Yang ;
Liu, Yu-Hui ;
Jiao, Shu-Sheng ;
Liu, Lu ;
Wang, Yajiang ;
Fu, Weiling .
MOLECULAR NEUROBIOLOGY, 2018, 55 (05) :3999-4008