3D gel-printing of hydroxyapatite scaffold for bone tissue engineering

被引:98
作者
Shao, Huiping [1 ]
He, Jianzhuang [1 ]
Lin, Tao [1 ]
Zhang, Zhinan [1 ]
Zhang, Yumeng [1 ]
Liu, Shuwen [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
关键词
3D printing; Hydroxyapatite; Bio-ceramic scaffolds; Ceramic slurry; Mechanical properties; COMPOSITE SCAFFOLDS; DEGRADATION; STRENGTH; INK;
D O I
10.1016/j.ceramint.2018.09.300
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Porous hydroxyapatite (HA) scaffolds for bone tissue engineering were successfully prepared using 3D gel printing technology. The rheological properties of the HA ceramic slurry, the porosity and shrinkage of the scaffold, and the mechanical properties and degradability of the scaffold were studied. The influence of printing speed on the formation of the scaffold was also investigated. HA ceramic slurry with a solid volume fraction of 55 vol% was used to prepare the scaffolds with an interconnected pore structure that can provide a channel for the adhesion, proliferation, and substance transportation of bone cells. The sintered scaffold had a pore size of about 350 mu m x 350 mu m. The porosity, and shrinkage in height and width were 52.26%, 16.2 +/- 0.2%, and 17.8 +/- 0.23%, respectively. The maximum compressive strength and compressive modulus of the sintered scaffolds were 16.77 +/- 0.38 and 492 +/- 11 MPa, respectively. The weight loss rate of the scaffold was 10.38% after degradation in Tris-HCI solution for 5 wk.
引用
收藏
页码:1163 / 1170
页数:8
相关论文
共 29 条
[1]   The cost of additive manufacturing: machine productivity, economies of scale and technology-push [J].
Baumers, Martin ;
Dickens, Phil ;
Tuck, Chris ;
Hague, Richard .
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2016, 102 :193-201
[2]   An overview of additive manufacturing (3D printing) for microfabrication [J].
Bhushan, Bharat ;
Caspers, Matt .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (04) :1117-1124
[3]   Powder-based 3D printing for bone tissue engineering [J].
Brunello, G. ;
Sivolella, S. ;
Meneghello, R. ;
Ferroni, L. ;
Gardin, C. ;
Piattelli, A. ;
Zavan, B. ;
Bressan, E. .
BIOTECHNOLOGY ADVANCES, 2016, 34 (05) :740-753
[4]   Direct inkjet printing of Si3N4:: Characterization of ink, green bodies and microstructure [J].
Cappi, B. ;
Oezkol, E. ;
Ebert, J. ;
Telle, R. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (13) :2625-2628
[5]   Fused deposition modeling with polypropylene [J].
Carneiro, O. S. ;
Silva, A. F. ;
Gomes, R. .
MATERIALS & DESIGN, 2015, 83 :768-776
[6]   Recent advances in 3D printing of biomaterials [J].
Chia, Helena N. ;
Wu, Benjamin M. .
JOURNAL OF BIOLOGICAL ENGINEERING, 2015, 9
[7]   3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications [J].
Cox, Sophie C. ;
Thornby, John A. ;
Gibbons, Gregory J. ;
Williams, Mark A. ;
Mallick, Kajal K. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 47 :237-247
[8]   Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering [J].
Dong, Zhihong ;
Li, Yubao ;
Zou, Qin .
APPLIED SURFACE SCIENCE, 2009, 255 (12) :6087-6091
[9]   Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers [J].
Elsayed, Hamada ;
Colombo, Paolo ;
Bernardo, Enrico .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (13) :4187-4195
[10]   The morphology of anisotropic 3D-printed hydroxyapatite scaffolds [J].
Fierz, Fabienne C. ;
Beckmann, Felix ;
Huser, Marius ;
Irsen, Stephan H. ;
Leukers, Barbara ;
Witte, Frank ;
Degistirici, Oezer ;
Andronache, Adrian ;
Thie, Michael ;
Mueller, Bert .
BIOMATERIALS, 2008, 29 (28) :3799-3806