Machine Learning-Based Rapid Detection of Volatile Organic Compounds in a Graphene Electronic Nose

被引:64
作者
Capman, Nyssa S. S. [1 ,2 ]
Zhen, Xue, V [3 ]
Nelson, Justin T. [3 ]
Chaganti, V. R. Saran Kumar [1 ]
Finc, Raia C. [3 ]
Lyden, Michael J. [3 ]
Williams, Thomas L. [3 ]
Freking, Mike [3 ]
Sherwood, Gregory J. [3 ]
Buhlmann, Philippe [4 ]
Hogan, Christopher J. [2 ]
Koester, Steven J. [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[3] Boston Sci, St Paul, MN 55112 USA
[4] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
graphene; gas sensor; volatile organic compound; surface functionalization; machine learning; QUANTUM CAPACITANCE; CONTACT-ANGLE; GAS SENSORS; FUNCTIONALIZATION; DIAGNOSIS; OXIDE; LUNG; DISCRIMINATION; DISEASES; CARBON;
D O I
10.1021/acsnano.2c10240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rapid detection of volatile organic compounds (VOCs) is growing in importance in many sectors. Noninvasive medical diagnoses may be based upon particular combinations of VOCs in human breath; detecting VOCs emitted from environmental hazards such as fungal growth could prevent illness; and waste could be reduced through monitoring of gases produced during food storage. Electronic noses have been applied to such problems, however, a common limitation is in improving selectivity. Graphene is an adaptable material that can be functionalized with many chemical receptors. Here, we use this versatility to demonstrate selective and rapid detection of multiple VOCs at varying concentrations with graphene-based variable capacitor (varactor) arrays. Each array contains 108 sensors functionalized with 36 chemical receptors for cross-selectivity. Multiplexer data acquisition from 108 sensors is accomplished in tens of seconds. While this rapid measurement reduces the signal magnitude, classification using supervised machine learning (Bootstrap Aggregated Random Forest) shows excellent results of 98% accuracy between 5 analytes (ethanol, hexanal, methyl ethyl ketone, toluene, and octane) at 4 concentrations each. With the addition of 1-octene, an analyte highly similar in structure to octane, an accuracy of 89% is achieved. These results demonstrate the important role of the choice of analysis method, particularly in the presence of noisy data. This is an important step toward fully utilizing graphene-based sensor arrays for rapid gas sensing applications from environmental monitoring to disease detection in human breath.
引用
收藏
页码:19567 / 19583
页数:17
相关论文
共 59 条
[31]   Improving the Binding Characteristics of Tripodal Compounds on Single Layer Graphene [J].
Mann, Jason A. ;
Dichtel, William R. .
ACS NANO, 2013, 7 (08) :7193-7199
[32]  
MANOLIS A, 1983, CLIN CHEM, V29, P5
[33]   Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers [J].
McCulloch, Michael ;
Jezierski, Tadeusz ;
Broffman, Michael ;
Hubbard, Alan ;
Turner, Kirk ;
Janecki, Teresa .
INTEGRATIVE CANCER THERAPIES, 2006, 5 (01) :30-39
[34]   Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers [J].
Nag, Sananda ;
Duarte, Lisday ;
Bertrand, Emilie ;
Celton, Veronique ;
Castro, Mickael ;
Choudhary, Veena ;
Guegan, Philippe ;
Feller, Jean-Francois .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (38) :6571-6579
[35]   Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules [J].
Nakhleh, Morad K. ;
Amal, Haitham ;
Jeries, Raneen ;
Broza, Yoav Y. ;
Aboud, Manal ;
Gharra, Alaa ;
Ivgi, Hodaya ;
Khatib, Salam ;
Badarneh, Shifaa ;
Har-Shai, Lior ;
Glass-Marmor, Lea ;
Lejbkowicz, Izabella ;
Miller, Ariel ;
Badarny, Samih ;
Winer, Raz ;
Finberg, John ;
Cohen-Kaminsky, Sylvia ;
Perros, Frederic ;
Montani, David ;
Girerd, Barbara ;
Garcia, Giles ;
Simonneau, Gerald ;
Nakhoul, Farid ;
Baram, Shira ;
Salim, Raed ;
Hakim, Marwan ;
Gruber, Maayan ;
Ronen, Ohad ;
Marshak, Tal ;
Doweck, Ilana ;
Nativ, Ofer ;
Bahouth, Zaher ;
Shi, Da-you ;
Zhang, Wei ;
Hua, Qing-ling ;
Pan, Yue-yin ;
Tao, Li ;
Liu, Hu ;
Karban, Amir ;
Koifman, Eduard ;
Rainis, Tova ;
Skapars, Roberts ;
Sivins, Armands ;
Ancans, Guntis ;
Liepniece-Karele, Inta ;
Kikuste, Ilze ;
Lasina, Ieva ;
Tolmanis, Ivars ;
Johnson, Douglas ;
Millstone, Stuart Z. .
ACS NANO, 2017, 11 (01) :112-125
[36]   Chemical Discrimination with an Unmodified Graphene Chemical Sensor [J].
Nallon, Eric C. ;
Schnee, Vincent P. ;
Bright, Collin ;
Polcha, Michael P. ;
Li, Qiliang .
ACS SENSORS, 2016, 1 (01) :26-31
[37]   Integrating graphene into semiconductor fabrication lines [J].
Neumaier, Daniel ;
Pindl, Stephan ;
Lemme, Max C. .
NATURE MATERIALS, 2019, 18 (06) :525-529
[38]   Scanning tunneling microscopy with chemically modified tips:: Discrimination of porphyrin centers based on metal coordination and hydrogen bond interactions [J].
Ohshiro, T ;
Ito, T ;
Bühlmann, P ;
Umezawa, Y .
ANALYTICAL CHEMISTRY, 2001, 73 (05) :878-883
[39]   Capacitive Sensing of Intercalated H2O Molecules Using Graphene [J].
Olson, Eric J. ;
Ma, Rui ;
Sun, Tao ;
Ebrish, Mona A. ;
Haratipour, Nazila ;
Min, Kyoungmin ;
Aluru, Narayana R. ;
Koester, Steven J. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (46) :25804-25812
[40]   Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye [J].
Pathipati, Srinivasa Rao ;
Pavlica, Egon ;
Treossi, Emanuele ;
Rizzoli, Rita ;
Veronese, Giulio Paolo ;
Palermo, Vincenzo ;
Chen, Liping ;
Beljonne, David ;
Cai, Jinming ;
Fasel, Roman ;
Ruffieux, Pascal ;
Bratina, Gvido .
ORGANIC ELECTRONICS, 2013, 14 (07) :1787-1792