Small deviations for fractional stable processes

被引:26
|
作者
Lifshits, M [1 ]
Simon, T [1 ]
机构
[1] Univ Evry Val Essonne, Equipe Anal & Prob, F-91025 Evry, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2005年 / 41卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
fractional Brownian motion; Gaussian process; linear fractional stable motion; Riemann-Liouville process; small ball constants; small ball probabilities; small deviations; stable process; wavelets;
D O I
10.1016/j.anihpb.2004.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {R-t, 0 <= t <= 1} be a symmetric alpha-stable Riemann-Liouville process with Hurst parameter H > 0. Consider a translation invariant, beta-self-similar, and p-pseudo-additive functional semi-norm vertical bar vertical bar (.) vertical bar vertical bar. We show that if H > beta + 1/p and gamma = (H - beta - 1/p)(-1), then lim epsilon(gamma)(epsilon down arrow 0) logP[vertical bar vertical bar R vertical bar vertical bar <= epsilon] = -K epsilon (-infinity, 0), with K finite in the Gaussian case alpha = 2. If alpha < 2, we prove that K is finite when R is continuous and H > beta + 1/p + 1/alpha. We also show that under the above assumptions, lim epsilon(gamma)(epsilon down arrow 0) logP[vertical bar vertical bar X vertical bar vertical bar <= epsilon] = -K epsilon (-infinity, 0), where X is the linear a-stable fractional motion with Hurst parameter H E (0, 1) (if a = 2, then X is the classical fractional Brownian motion). These general results cover many cases previously studied in the literature, and also prove the existence of new small deviation constants, both in Gaussian and non-Gaussian frameworks. (c) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:725 / 752
页数:28
相关论文
共 50 条
  • [1] Unilateral small deviations of processes related to the fractional Brownian motion
    Molchan, G.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (11) : 2085 - 2097
  • [2] Small deviations of weighted fractional processes and average non-linear approximation
    Lifshits, MA
    Linde, W
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) : 2059 - 2079
  • [3] Small deviations of stable processes and entropy of the associated random operators
    Aurzada, Frank
    Lifshits, Mikhail
    Linde, Werner
    BERNOULLI, 2009, 15 (04) : 1305 - 1334
  • [4] SMALL DEVIATIONS OF GENERAL LEVY PROCESSES
    Aurzada, Frank
    Dereich, Steffen
    ANNALS OF PROBABILITY, 2009, 37 (05): : 2066 - 2092
  • [5] Small deviations for stable processes via compactness properties of the parameter set
    Aurzada, Frank
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (06) : 577 - 581
  • [6] Small Deviations for a Family of Smooth Gaussian Processes
    Aurzada, Frank
    Gao, Fuchang
    Kuehn, Thomas
    Li, Wenbo V.
    Shao, Qi-Man
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (01) : 153 - 168
  • [7] PATH REGULARITY OF GAUSSIAN PROCESSES VIA SMALL DEVIATIONS
    Aurzada, Frank
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2011, 31 (01): : 61 - 78
  • [8] LARGE DEVIATIONS FOR LOCAL TIMES AND INTERSECTION LOCAL TIMES OF FRACTIONAL BROWNIAN MOTIONS AND RIEMANN-LIOUVILLE PROCESSES
    Chen, Xia
    Li, Wenbo V.
    Rosinski, Jan
    Shao, Qi-Man
    ANNALS OF PROBABILITY, 2011, 39 (02): : 729 - 778
  • [9] Small deviations for admixture additive & multiplicative processes
    Liang, Mingjie
    Wu, Bingyao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [10] Small Deviations for a Family of Smooth Gaussian Processes
    Frank Aurzada
    Fuchang Gao
    Thomas Kühn
    Wenbo V. Li
    Qi-Man Shao
    Journal of Theoretical Probability, 2013, 26 : 153 - 168