Asymptotic expansion of the solution to the nonlinear Schrodinger equation with nonlocal interaction

被引:12
作者
Wada, T [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.1006/jfan.2000.3694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the equation iu(t) + (1/2) Deltau = lambda(\x\(-1) * \u\(2)) u, u(0, x) = u(o)(x). Here, u is it complex-valued function of (t,x) is an element ofR x R-n, n greater than or equal to2; and lambda is a real number. If u(o) is small in L-2,L-s with s> (n/2) + 2, then the solution u(t) behaves asymptotically as u(t, x) = (it)(-n/2) exp((t\x\(2)/2t) - i (S) over tilde (t, x\t)) [GRAPHICS] uniformly in R-n as t-->infinity. Here phi is a suitable function called the modified scattering state, and the functions (S) over tilde, psi (1,j), j = 0, 1, 2, are represented explicitly by using phi. (C) 2001 Academic Press.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 22 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130
[3]   ASYMPTOTIC CONVERGENCE + COULOMB INTERACTION [J].
DOLLARD, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (06) :729-&
[4]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[5]   Long range scattering and modified wave operators for some Hartree type equations I [J].
Ginibre, J ;
Velo, G .
REVIEWS IN MATHEMATICAL PHYSICS, 2000, 12 (03) :361-429
[6]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[7]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO CERTAIN NONLINEAR SCHRODINGER-HARTREE EQUATIONS [J].
GLASSEY, RT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (01) :9-18
[8]   Scattering theory for the Hartree equation [J].
Hayashi, N ;
Naumkin, PI ;
Ozawa, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) :1256-1267
[9]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389
[10]  
HAYASHI N, 1988, ANN I H POINCARE-PHY, V48, P17