Rational points on the superelliptic Erdos-Selfridge curve of fifth degree

被引:5
作者
Lakhal, M [1 ]
Sander, JW [1 ]
机构
[1] Univ Hannover, Inst Math, D-30167 Hannover, Germany
关键词
D O I
10.1112/S0025579300014844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:113 / 124
页数:12
相关论文
共 9 条
[1]  
Darmon H, 1997, J REINE ANGEW MATH, V490, P81
[2]  
Dickson L. E, 1919, HIST THEORY NUMBERS, V2
[3]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[4]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[5]  
Poonen B, 1998, ACTA ARITH, V86, P193
[6]  
Ribet KA, 1997, ACTA ARITH, V79, P7
[7]   Rational points on a class of superelliptic curves [J].
Sander, JW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :422-434
[8]   MODULAR-REPRESENTATIONS OF DEGREE-2 OF THE GALOIS-GROUP GAL(QIQ) [J].
SERRE, JP .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :179-230
[9]   MODULAR ELLIPTIC-CURVES AND FERMATS LAST THEOREM [J].
WILES, A .
ANNALS OF MATHEMATICS, 1995, 141 (03) :443-551