On instability of solitons in the 2d cubic Zakharov-Kuznetsov equation

被引:3
作者
Farah, Luiz Gustavo [1 ]
Holmer, Justin [2 ]
Roudenko, Svetlana [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, MG, Brazil
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
[3] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2019年 / 13卷 / 02期
关键词
Zakharov-Kuznetsov equation; Instability of solitons; Monotonicity; Virial; L-2-critical; ASYMPTOTIC STABILITY; EXISTENCE; POISSON;
D O I
10.1007/s40863-019-00142-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the critical generalized Zakharov-Kuznetsov (ZK) equation, u(t) + partial derivative(x1)(Delta u + u(3)) = 0, (x(1), x(2)) is an element of R-2. In Farah et al. (Instability of solitons in the 2d cubic Zakharov-Kuznetsov equation, arXiv:1711.05907, 2017), we proved that solitons are unstable for this equation following the strategy byMartel and Merle (GAFA Geom Funct Anal 11:74-123, 2001) in their study of the critical generalized Kortwegde Vries equation. The main ingredient used in Farah et al. (Instability of solitons in the 2d cubic Zakharov-Kuznetsov equation, arXiv:1711.05907, 2017) was the new pointwise decay estimates in two dimensions together with monotonicity properties of solutions. In this paper, we show that using only monotonicity properties and not relying on pointwise estimates, thus, greatly simplifying the approach, we can prove an instability of solitons, though a slightly weaker version.
引用
收藏
页码:435 / 446
页数:12
相关论文
共 17 条
  • [1] THE STABILITY OF INTERNAL SOLITARY WAVES
    BENNETT, DP
    BROWN, RW
    STANSFIELD, SE
    STROUGHAIR, JD
    BONA, JL
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 94 (SEP) : 351 - 379
  • [2] Spectra of linearized operators for NLS solitary waves
    Chang, Shu-Ming
    Gustafson, Stephen
    Nakanishi, Kenji
    Tsai, Tai-Peng
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1070 - 1111
  • [3] Farah L.G., 2017, FIELDS I COMMUNICATI
  • [4] From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov
    Han-Kwan, Daniel
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (03) : 961 - 993
  • [5] Asymptotic stability of solitons for the Benjamin-Ono equation
    Kenig, Carlos E.
    Martel, Yvan
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (03) : 909 - 970
  • [6] Kuznetsov EA., 1974, Sov. Phys. JETP, V39, P285
  • [7] KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
  • [8] The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation
    Lannes, David
    Linares, Felipe
    Saut, Jean-Claude
    [J]. STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 : 181 - 213
  • [9] Existence of nonstationary bubbles in higher dimensions
    Maris, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (12): : 1207 - 1239
  • [10] Asymptotic stability of solitons of the subcritical gKdV equations revisited
    Martel, Y
    Merle, F
    [J]. NONLINEARITY, 2005, 18 (01) : 55 - 80