Stochastic delay evolution equations driven by sub-fractional Brownian motion

被引:4
作者
Li, Zhi [1 ]
Zhou, Guoli [2 ]
Luo, Jiaowan [3 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
[2] Chongqing Univ, Sch Math & Stat, Chongqing 400044, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
existence and uniqueness; stochastic delay evolution equations; sub-fractional Brownian motion; exponential decay in mean square; INTEGRATION; RESPECT; SYSTEMS; TIME;
D O I
10.1186/s13662-015-0366-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a sub-fractional Brownian motion S-Q(H) (t): dX(t) = (AX(t) + f (t, X-t)) dt + g(t) dS(Q)(H) (t) with index H is an element of (1/ 2, 1).
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Symmetric Fuzzy Stochastic Differential Equations Driven by Fractional Brownian Motion
    Jafari, Hossein
    Malinowski, Marek T.
    SYMMETRY-BASEL, 2023, 15 (07):
  • [42] Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation
    Kuang, Nenghui
    Liu, Bingquan
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) : 778 - 789
  • [43] STOCHASTIC INTEGRAL FOR NON-ADAPTED PROCESSES RELATED TO SUB-FRACTIONAL BROWNIAN MOTION WHEN H > 1/2
    Amel, Belhadj
    Abdeldjebbar, Kandouci
    Angelika, Bouchentouf Amina
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02): : 165 - 176
  • [44] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion
    Nualart, David
    Saussereau, Bruno
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 391 - 409
  • [45] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    YAN LiTan
    HE Kun
    CHEN Chao
    ScienceChina(Mathematics), 2013, 56 (10) : 2089 - 2116
  • [46] Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion
    Kuang, Nenghui
    Xie, Huantian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 215 - 229
  • [47] The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
    LiTan Yan
    Kun He
    Chao Chen
    Science China Mathematics, 2013, 56 : 2089 - 2116
  • [48] Reflected stochastic differential equations driven by standard and fractional Brownian motion
    Chadad, Monir
    Erraoui, Mohamed
    STOCHASTICS AND DYNAMICS, 2024, 24 (02)
  • [49] Viability for differential equations driven by fractional Brownian motion
    Ciotir, Ioana
    Rascanu, Aurel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) : 1505 - 1528
  • [50] Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion
    Zhang, Xinwen
    Ruan, Dehao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,