Stochastic delay evolution equations driven by sub-fractional Brownian motion
被引:4
作者:
Li, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R ChinaYangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
Li, Zhi
[1
]
Zhou, Guoli
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Sch Math & Stat, Chongqing 400044, Peoples R ChinaYangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
Zhou, Guoli
[2
]
Luo, Jiaowan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R ChinaYangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
Luo, Jiaowan
[3
]
机构:
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
[2] Chongqing Univ, Sch Math & Stat, Chongqing 400044, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
来源:
ADVANCES IN DIFFERENCE EQUATIONS
|
2015年
关键词:
existence and uniqueness;
stochastic delay evolution equations;
sub-fractional Brownian motion;
exponential decay in mean square;
INTEGRATION;
RESPECT;
SYSTEMS;
TIME;
D O I:
10.1186/s13662-015-0366-1
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a sub-fractional Brownian motion S-Q(H) (t): dX(t) = (AX(t) + f (t, X-t)) dt + g(t) dS(Q)(H) (t) with index H is an element of (1/ 2, 1).