Stochastic delay evolution equations driven by sub-fractional Brownian motion

被引:4
作者
Li, Zhi [1 ]
Zhou, Guoli [2 ]
Luo, Jiaowan [3 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou 434023, Peoples R China
[2] Chongqing Univ, Sch Math & Stat, Chongqing 400044, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
existence and uniqueness; stochastic delay evolution equations; sub-fractional Brownian motion; exponential decay in mean square; INTEGRATION; RESPECT; SYSTEMS; TIME;
D O I
10.1186/s13662-015-0366-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a sub-fractional Brownian motion S-Q(H) (t): dX(t) = (AX(t) + f (t, X-t)) dt + g(t) dS(Q)(H) (t) with index H is an element of (1/ 2, 1).
引用
收藏
页数:17
相关论文
共 18 条
[1]   Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (01) :1-18
[2]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[3]   Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems [J].
Bojdecki, Tomasz ;
Gorostiza, Luis G. ;
Talarczyk, Anna .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :161-172
[4]  
Da Prato G., 1992, STOCHASTIC EQUATIONS, DOI 10.1017/CBO9780511666223
[5]   A series expansion of fractional Brownian motion [J].
Dzhaparidze, K ;
van Zanten, H .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 130 (01) :39-55
[6]  
Mendy I., 2010, PREPRINT
[7]   Parametric estimation for sub-fractional Ornstein-Uhlenbeck process [J].
Mendy, Ibrahima .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (04) :663-674
[8]  
Nualart David, 2006, The Malliavin Calculus and Related Topics, V1995
[9]   Stochastic integration with respect to the sub-fractional Brownian motion with H ∈ (0,1/2) [J].
Shen, Guangjun ;
Chen, Chao .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) :240-251
[10]  
Tudor C., 2008, SUBFRACTIONAL BROWNI