Band-Gap of a Soft Magnetorheological Phononic Crystal

被引:55
作者
Bayat, Alireza [1 ]
Gordaninejad, Faramarz [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, Composite & Intelligent Mat Lab, Reno, NV 89557 USA
来源
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME | 2015年 / 137卷 / 01期
关键词
phononic crystal; soft magnetorheological elastomers; magnetoelastic; bandgaps; instability; band diagram; Bloch boundary conditions; SOLIDS; DEFORMATION; WAVES;
D O I
10.1115/1.4028556
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents the wave propagation in a tunable phononic crystal consisting of a porous hyperelastic magnetorheological elastomer (MRE) subjected to an external magnetic field. Finite deformations and magnetic induction influence phononic characteristics of the periodic structure through altering the geometry and material properties of the unit cell. The governing equations for incremental time-harmonic plane wave motions superimposed on a static predeformed media are derived. Analytical and finite element (FE) methods are used to investigate dispersion relation and band structure of the phononic crystal for different levels of deformation and applied magnetic induction. It is demonstrated that large deformations and magnetic induction could transform the location and width of band-gaps.
引用
收藏
页数:8
相关论文
共 21 条
[1]   A magnetically field-controllable phononic crystal [J].
Bayat, Alireza ;
Gordaninejad, Faramarz .
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
[2]   Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures [J].
Bertoldi, K. ;
Boyce, M. C. ;
Deschanel, S. ;
Prange, S. M. ;
Mullin, T. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (08) :2642-2668
[3]   Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations [J].
Bertoldi, K. ;
Boyce, M. C. .
PHYSICAL REVIEW B, 2008, 78 (18)
[4]   Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity [J].
Bustamante, R. ;
Dorfmann, A. ;
Ogden, R. W. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (06) :874-883
[5]   On magneto-acoustic waves in finitely deformed elastic solids [J].
Destrade, Michel ;
Ogden, Raymond W. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2011, 16 (06) :594-604
[6]  
Deymier PA., 2013, Acoustic metamaterials and phononic crystals, P253
[7]   Tunability of longitudinal wave band gaps in one dimensional phononic crystal with magnetostrictive material [J].
Ding, Rui ;
Su, Xingliang ;
Zhang, Juanjuan ;
Gao, Yuanwen .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (07)
[8]   Universal relations for non-linear magnetoelastic solids [J].
Dorfmann, A ;
Ogden, RW ;
Saccomandi, G .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (10) :1699-1708
[9]  
Dorfmann AL., 2014, nonlinear theory of electroelastic and magnetoelastic interactions, P91
[10]  
Holzapfel GA., 2000, NONLINEAR SOLID MECH