Face Video Super-Resolution with Identity Guided Generative Adversarial Networks

被引:5
作者
Li, Dingyi [1 ]
Wang, Zengfu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
来源
COMPUTER VISION, PT II | 2017年 / 772卷
基金
中国国家自然科学基金;
关键词
Super-resolution; Face hallucination; Identity guidance; Generative adversarial networks (GANs); HALLUCINATION;
D O I
10.1007/978-981-10-7302-1_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Faces are of particular concerns in video surveillance systems. It is challenging to reconstruct clear faces from low-resolution (LR) videos. In this paper, we propose a new method for face video super-resolution (SR) based on identity guided generative adversarial networks (GANs). We establish a two-stage convolutional neural network (CNN) for face video SR, and employ identity guided GANs to recover high-resolution (HR) facial details. Extensive experiments validate the effectiveness of our proposed method from the following aspects: fidelity, visual quality and robustness to pose, expression and illuminance variations.
引用
收藏
页码:357 / 369
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 2016, ARXIV161005586
[2]  
Baker S., 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580), P83, DOI 10.1109/AFGR.2000.840616
[3]  
Drulea M, 2011, IEEE INT C INTELL TR, P318, DOI 10.1109/ITSC.2011.6082986
[4]  
Gulrajani I., 2017, ADV NEURAL INFORM PR, V30, P1, DOI DOI 10.5555/3295222.3295327
[5]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[6]   Noise Robust Face Hallucination via Locality-Constrained Representation [J].
Jiang, Junjun ;
Hu, Ruimin ;
Wang, Zhongyuan ;
Han, Zhen .
IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (05) :1268-1281
[7]   Perceptual Losses for Real-Time Style Transfer and Super-Resolution [J].
Johnson, Justin ;
Alahi, Alexandre ;
Li Fei-Fei .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :694-711
[8]   Video Super-Resolution With Convolutional Neural Networks [J].
Kappeler, Armin ;
Yoo, Seunghwan ;
Dai, Qiqin ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (02) :109-122
[9]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]
[10]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114