Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators

被引:68
作者
Dadashi, Vahid [1 ]
Postolache, Mihai [2 ,3 ,4 ]
机构
[1] Islamic Azad Univ, Dept Math, Sari Branch, Sari, Iran
[2] China Med Univ, Taichung 40402, Taiwan
[3] Romanian Acad, Inst Math Stat & Appl Math, Bucharest 050711, Romania
[4] Univ Politehn Bucuresti, Dept Math & Comp Sci, Bucharest 060042, Romania
关键词
STRONG-CONVERGENCE; NONEXPANSIVE-MAPPINGS; MAXIMAL MONOTONICITY; EQUILIBRIUM PROBLEMS; ACCRETIVE OPERATOR; WEAK; REGULARIZATION; THEOREMS;
D O I
10.1007/s40065-018-0236-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a forward-backward splitting algorithm for approximating a zero of the sum of an alpha-inverse strongly monotone operator and a maximal monotone operator. The strong convergence theorem is then proved under mild conditions. Then, we add a nonexpansive mapping in the algorithm and prove that the generated sequence converges strongly to a common element of a fixed points set of a nonexpansive mapping and zero points set of the sum of monotone operators. We apply our main result both to equilibrium problems and convex programming.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 48 条
[1]   Another version of the proximal point algorithm in a Banach space [J].
Alber, Ya I. ;
Yao, Jen-Chih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3159-3171
[2]  
[Anonymous], ADV FIXED POINT THEO
[3]  
[Anonymous], 1979, NONLINEAR ANAL
[4]  
[Anonymous], 2016, ABSTR APPL AN, DOI DOI 10.1155/2016/2371857
[5]  
Aoyama K, 2007, J NONLINEAR CONVEX A, V8, P471
[6]   A proximal point algorithm converging strongly for general errors [J].
Boikanyo, O. A. ;
Morosanu, G. .
OPTIMIZATION LETTERS, 2010, 4 (04) :635-641
[7]   A proximal point method for the variational inequality problem in Banach spaces [J].
Burachik, RS ;
Scheimberg, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1633-1649
[8]   A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization [J].
Chang, Shih-sen ;
Lee, H. W. Joseph ;
Chan, Chi Kin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3307-3319
[9]   Iterative processes for common fixed points of two different families of mappings with applications [J].
Cho, Sun Young ;
Qin, Xiaolong ;
Kang, Shin Min .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) :1429-1446
[10]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC