A DETAILED PERFORMANCE ANALYSIS OF HYPERSPECTRAL IMAGE COMPRESSION TECHNIQUES

被引:0
作者
Danisman, Mehmetali [1 ]
Karaca, Ali Can [1 ]
Can, Ergun [1 ]
Urhan, Oguzhan [1 ]
Gullu, M. Kemal [1 ]
机构
[1] Kocaeli Univ, Elect & Commun Engn Dept, Izmit, Turkey
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Hyperspectral image compression; quality metrics; performance evaluation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compression of hyperspectral images is an important topic for transmission and storage of data. There are several compression approaches proposed in the literature. Performance analysis of these methods is generally measured by image quality metrics. However, image quality metrics are not capable of determining compression performance for a specific application area. In this paper, popular compression approaches JPEG2000, PCA+JPEG2000, DWT+JPEG2000, 3D-SPECK, and 3D-TARP are evaluated in terms of unmixing, anomaly detection, target detection, and classification performances. Experimental evaluations are carried out on four hyperspectral datasets, and obtained results are interpreted.
引用
收藏
页码:5069 / 5072
页数:4
相关论文
共 14 条
[1]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[2]   Quality criteria benchmark for hyperspectral imagery [J].
Christophe, E ;
Léger, D ;
Mailhes, C .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (09) :2103-2114
[3]   Hyperspectral image compression using JPEG2000 and principal component analysis [J].
Du, Qian ;
Fowler, James E. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (02) :201-205
[4]   On the Impact of Lossy Compression on Hyperspectral Image Classification and Unmixing [J].
Garcia-Vilchez, Fernando ;
Munoz-Mari, Jordi ;
Zortea, Maciel ;
Blanes, Ian ;
Gonzalez-Ruiz, Vicente ;
Camps-Valls, Gustavo ;
Plaza, Antonio ;
Serra-Sagrista, Joan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (02) :253-257
[5]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[6]   Compression of Hyperspectral Images Containing a Subpixel Target [J].
Huber-Lerner, Merav ;
Hadar, Ofer ;
Rotman, Stanley R. ;
Huber-Shalem, Revital .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2246-2255
[7]  
Information Technology-JPEG, 2000, 154442 ISOIEC
[8]  
Kaarna A., 1998, PATTERN RECOGN, V16, P413
[9]   Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery [J].
Li, Wei ;
Wu, Guodong ;
Du, Qian .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) :597-601
[10]   Vertex component analysis: A fast algorithm to unmix hyperspectral data [J].
Nascimento, JMP ;
Dias, JMB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (04) :898-910