Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.)

被引:22
|
作者
Benabderrahim, Mohamed Ali [1 ]
Guiza, Marwa [2 ]
Haddad, Mansour [1 ]
机构
[1] Arid Lands Inst, Arid & Oases Cropping Lab, Medenine 4119, Tunisia
[2] Univ Sfax, Ctr Biotechnol Sfax, Biotechnol & Plant Improvement Lab, BP 1177, Sfax 3018, Tunisia
关键词
Tetraploid alfalfa; Genotype; Salt tolerance; Ion homeostasis; Enzymatic activities; DROUGHT TOLERANCE; OXIDATIVE STRESS; BRASSICA-NAPUS; IN-VITRO; PHYSIOLOGICAL-RESPONSES; SALINITY STRESS; WHEAT; ACCUMULATION; PLANTS; NA+;
D O I
10.1007/s11738-019-2993-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Alfalfa (Medicago sativa L. subsp. sativa) is the most cultivated perennial forage crop worldwide. It is an autotetraploid (2n = 4x = 32), out-crossing species and it has potential to be cultivated in marginal lands affected by salinity. In this study, genetic diversity for salt tolerance was explored in 36 alfalfa genotypes from continental (15 genotypes) and coastal regions (21 genotypes), under salt stress of 150 mM NaCl. Also, characters and mechanisms that can be used to increase yield under saline conditions were investigated. All genotypes were clonally propagated into 144 seedlings (four plants/genotype) and designed in a randomized complete block under greenhouse conditions. Twelve tolerance traits were scored; fresh and dry aboveground biomasses, stem length, leaf number, [Na+], [K+], K+/Na+ ratio, catalases and superoxide dismutases, proteases, protein and reducing sugar in leaves. Stress tolerance index was calculated for each genotype. High significant variation was found among genotypes and treatments for fresh and dry matters. All genotypes had [Na+] in shoots significantly higher in stressed plants than in control plants and low K+/Na+ ratios, signifying the use of Na+ "inclusion mechanism" to prevent salt stress. The increase in catalase activity in shoots under salt condition demonstrates that this antioxidant enzyme could be playing an essential role in the tolerance mechanism. In contrast, it seems that alfalfa tolerance system to cope salt stress is not related to protease, superoxide dismutase, and proteins accumulation. Based on salt tolerance index and PCA analysis, three tolerant genotypes from coastal origin were selected that can be prominent sources for breeding program of alfalfa.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.)
    Mohamed Ali Benabderrahim
    Marwa Guiza
    Mansour Haddad
    Acta Physiologiae Plantarum, 2020, 42
  • [2] Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.)
    Tang, Lili
    Cai, Hua
    Ji, Wei
    Luo, Xiao
    Wang, Zhenyu
    Wu, Jing
    Wang, Xuedong
    Cui, Lin
    Wang, Yang
    Zhu, Yanming
    Bai, Xi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 71 : 22 - 30
  • [3] Melatonin Application Improves Salt Tolerance of Alfalfa (Medicago sativa L.) by Enhancing Antioxidant Capacity
    Cen, Huifang
    Wang, Tingting
    Liu, Huayue
    Tian, Danyang
    Zhang, Yunwei
    PLANTS-BASEL, 2020, 9 (02):
  • [4] MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance
    Shiwen Lin
    Jie Yang
    Yanrong Liu
    Wanjun Zhang
    Plant Cell Reports, 2024, 43
  • [5] MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance
    Lin, Shiwen
    Yang, Jie
    Liu, Yanrong
    Zhang, Wanjun
    PLANT CELL REPORTS, 2024, 43 (04)
  • [6] Genetic Engineering of Alfalfa (Medicago sativa L.)
    Wang, Dan
    Khurshid, Muhammad
    Sun, ZhanMin
    Tang, YiXiong
    Zhou, MeiLiang
    Wu, YanMin
    PROTEIN AND PEPTIDE LETTERS, 2016, 23 (05) : 495 - 502
  • [7] Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance
    Zhang, Tiejun
    Kesoju, Sandya
    Greene, Stephanie L.
    Fransen, Steven
    Hu, Jinguo
    Yu, Long-Xi
    GENETIC RESOURCES AND CROP EVOLUTION, 2018, 65 (02) : 471 - 484
  • [8] The Progress of Genetic Improvement in Alfalfa (Medicago sativa L.)
    Kumar, Tanweer
    Bao, Ai-Ke
    Bao, Zhulatai
    Wang, Fei
    Gao, Li
    Wang, Suo-Min
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2018, 54 (02) : 41 - 51
  • [9] Abscisic Acid Priming Creates Alkaline Tolerance in Alfalfa Seedlings (Medicago sativa L.)
    Wei, Tian-Jiao
    Wang, Ming-Ming
    Jin, Yang-Yang
    Zhang, Guo-Hui
    Liu, Miao
    Yang, Hao-Yu
    Jiang, Chang-Jie
    Liang, Zheng-Wei
    AGRICULTURE-BASEL, 2021, 11 (07):
  • [10] Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection
    Campanelli, Angela
    Ruta, Claudia
    Morone-Fortunato, Irene
    De Mastro, Giuseppe
    CENTRAL EUROPEAN JOURNAL OF BIOLOGY, 2013, 8 (08): : 765 - 776