Climate Analytics Workflow Recommendation as a Service - Provenance-driven Automatic Workflow Mashup
被引:4
|
作者:
Zhang, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Zhang, Jia
[1
]
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Wang, Wei
[1
]
Wei, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Wei, Xing
[1
]
Lee, Chris
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Lee, Chris
[1
]
Lee, Seungwon
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Jet Prop Lab, Pasadena, CA 91125 USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Lee, Seungwon
[2
]
Pan, Lei
论文数: 0引用数: 0
h-index: 0
机构:
CALTECH, Jet Prop Lab, Pasadena, CA 91125 USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Pan, Lei
[2
]
Lee, Tsengdar J.
论文数: 0引用数: 0
h-index: 0
机构:
NASA Headquarters, Sci Miss Directorate, Washington, DC USACarnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
Lee, Tsengdar J.
[3
]
机构:
[1] Carnegie Mellon Univ Silicon Valley, Moffett Field, CA 94035 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[3] NASA Headquarters, Sci Miss Directorate, Washington, DC USA
来源:
2015 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS)
|
2015年
基金:
美国国家科学基金会;
关键词:
Service recommendation;
automatic workflow generation;
D O I:
10.1109/ICWS.2015.22
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Existing scientific workflow tools, created by computer scientists, require that domain scientists meticulously design their multi-step experiments before analyzing data. However, this is oftentimes contradictory to a domain scientist's routine of conducting research and exploration. This paper presents a novel way to resolve this dispute, in the context of service-oriented science. After scrutinizing how Earth scientists conduct data analytics research in their daily work, a provenance model is developed to record their activities. Reverse-engineering the provenance, a technology is developed to automatically generate workflows for scientists to review and revise, supported by a Petri nets-based workflow verification instrument. In addition, dataset is proposed to be treated as first-class citizen to drive the knowledge sharing and recommendation. A data-centric repository infrastructure is established to catch richer provenance to further facilitate collaboration in the science community. In this way, we aim to revolutionize computer-supported Earth science.