Joint independent component analysis for hypothesizing spatiotemporal relationships between longitudinal gray and white matter changes in preclinical Alzheimer's disease

被引:0
作者
Cai, Leon Y. [1 ]
Rheault, Francois [2 ]
Kerley, Cailey, I [2 ]
Aboud, Katherine S. [3 ]
Beason-Held, Lori L. [4 ]
Shafer, Andrea T. [4 ]
Resnick, Susan M. [4 ]
Jordan, Lori C. [5 ,6 ]
Anderson, Adam W. [1 ,7 ,8 ]
Schilling, Kurt G. [7 ,8 ]
Landman, Bennett A. [1 ,2 ,7 ,8 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect & Comp Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Brain Inst, 221 Kirkland Hall, Nashville, TN 37235 USA
[4] NIA, Lab Behav Neurosci, NIH, Baltimore, MD 21224 USA
[5] Vanderbilt Univ, Med Ctr, Dept Pediat, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN USA
[7] Vanderbilt Univ, Dept Radiol & Radiol Sci, Med Ctr, Nashville, TN USA
[8] Vanderbilt Univ, Inst Imaging Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
来源
MEDICAL IMAGING 2022: IMAGE PROCESSING | 2022年 / 12032卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
independent component analysis; Alzheimer's disease; spatiotemporal modeling; longitudinal; cortical morphometry; fiber tractography; white matter pathway shape analysis; multimodal MRI; TEMPORAL-LOBE ATROPHY; COGNITIVE IMPAIRMENT; DIAGNOSIS;
D O I
10.1117/12.2611562
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Characterizing relationships between gray matter (GM) and white matter (WM) in early Alzheimer's disease (AD) would improve understanding of how and when AD impacts the brain. However, modeling these relationships across brain regions and longitudinally remains a challenge. Thus, we propose extending joint independent component analysis (jICA) into spatiotemporal modeling of regional cortical thickness and WM bundle volumes leveraging multimodal MRI. We jointly characterize these GM and WM features in a normal aging (n=316) and an age- and sex-matched preclinical AD cohort (n=81) at each of two imaging sessions spaced three years apart, training on the normal aging population in cross-validation and interrogating the preclinical AD cohort. We find this joint model identifies reproducible, longitudinal changes in GM and WM between the two imaging sessions and that these changes are associated with preclinical AD and are plausible considering the literature. We compare this joint model to two focused models: (1) GM features at the first session and WM at the second and (2) vice versa. The joint model identifies components that correlate poorly with those from the focused models, suggesting the different models resolve different patterns. We find the strength of association with preclinical AD is improved in the GM to WM model, which supports the hypothesis that medial temporal and frontal thinning precedes volume loss in the uncinate fasciculus and inferior anterior-posterior association fibers. These results suggest that jICA effectively generates spatiotemporal hypotheses about GM and WM in preclinical AD, especially when specific intermodality relationships are considered a priori.
引用
收藏
页数:10
相关论文
共 22 条
  • [11] Longitudinal white matter changes in Alzheimer's disease: A tractography-based analysis study
    Kitamura, Soichiro
    Kiuchi, Kuniaki
    Taoka, Toshiaki
    Hashimoto, Kazumichi
    Ueda, Shotaro
    Yasuno, Fumihiko
    Morikawa, Masayuki
    Kichikawa, Kimihiko
    Kishimoto, Toshifumi
    [J]. BRAIN RESEARCH, 2013, 1515 : 12 - 18
  • [12] Le QV., 2011, ICA with reconstruction cost for efficient overcomplete feature Learning
  • [13] Early diagnosis of Alzheimer's disease: clinical and economic benefits
    Leifer, BP
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2003, 51 (05) : S281 - S288
  • [14] Hierarchical spherical deformation for cortical surface registration
    Lyu, Ilwoo
    Kang, Hakmook
    Woodward, Neil D.
    Styner, Martin A.
    Landman, Bennett A.
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 57 : 72 - 88
  • [15] Cortical Surface Parcellation Using Spherical Convolutional Neural Networks
    Parvathaneni, Prasanna
    Bao, Shunxing
    Nath, Vishwesh
    Woodward, Neil D.
    Claassen, Daniel O.
    Cascio, Carissa J.
    Zald, David H.
    Huo, Yuankai
    Landman, Bennett A.
    Lyu, Ilwoo
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 501 - 509
  • [16] One-year age changes in MRI brain volumes in older adults
    Resnick, SM
    Goldszal, AF
    Davatzikos, C
    Golski, S
    Kraut, MA
    Metter, EJ
    Bryan, RN
    Zonderman, AB
    [J]. CEREBRAL CORTEX, 2000, 10 (05) : 464 - 472
  • [17] Diffusion Tensor Imaging Surpasses Cerebrospinal Fluid as Predictor of Cognitive Decline and Medial Temporal Lobe Atrophy in Subjective Cognitive Impairment and Mild Cognitive Impairment
    Selnes, Per
    Aarsland, Dag
    Bjornerud, Atle
    Gjerstad, Leif
    Wallin, Anders
    Hessen, Erik
    Reinvang, Ivar
    Grambaite, Ramune
    Auning, Eirik
    Kjaervik, Veslemoy Krohn
    Due-Tonnessen, Paulina
    Stenset, Vidar
    Fladby, Tormod
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2013, 33 (03) : 723 - 736
  • [18] Grey and White Matter Changes at Different Stages of Alzheimer's Disease
    Serra, Laura
    Cercignani, Mara
    Lenzi, Delia
    Perri, Roberta
    Fadda, Lucia
    Caltagirone, Carlo
    Macaluso, Emiliano
    Bozzali, Marco
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2010, 19 (01) : 147 - 159
  • [19] Shock NW., 1984, NORMAL HUMAN AGING B
  • [20] Visser PJ, 2002, J NEUROL NEUROSUR PS, V72, P491