Joint independent component analysis for hypothesizing spatiotemporal relationships between longitudinal gray and white matter changes in preclinical Alzheimer's disease

被引:0
作者
Cai, Leon Y. [1 ]
Rheault, Francois [2 ]
Kerley, Cailey, I [2 ]
Aboud, Katherine S. [3 ]
Beason-Held, Lori L. [4 ]
Shafer, Andrea T. [4 ]
Resnick, Susan M. [4 ]
Jordan, Lori C. [5 ,6 ]
Anderson, Adam W. [1 ,7 ,8 ]
Schilling, Kurt G. [7 ,8 ]
Landman, Bennett A. [1 ,2 ,7 ,8 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect & Comp Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Brain Inst, 221 Kirkland Hall, Nashville, TN 37235 USA
[4] NIA, Lab Behav Neurosci, NIH, Baltimore, MD 21224 USA
[5] Vanderbilt Univ, Med Ctr, Dept Pediat, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN USA
[7] Vanderbilt Univ, Dept Radiol & Radiol Sci, Med Ctr, Nashville, TN USA
[8] Vanderbilt Univ, Inst Imaging Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
来源
MEDICAL IMAGING 2022: IMAGE PROCESSING | 2022年 / 12032卷
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
independent component analysis; Alzheimer's disease; spatiotemporal modeling; longitudinal; cortical morphometry; fiber tractography; white matter pathway shape analysis; multimodal MRI; TEMPORAL-LOBE ATROPHY; COGNITIVE IMPAIRMENT; DIAGNOSIS;
D O I
10.1117/12.2611562
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Characterizing relationships between gray matter (GM) and white matter (WM) in early Alzheimer's disease (AD) would improve understanding of how and when AD impacts the brain. However, modeling these relationships across brain regions and longitudinally remains a challenge. Thus, we propose extending joint independent component analysis (jICA) into spatiotemporal modeling of regional cortical thickness and WM bundle volumes leveraging multimodal MRI. We jointly characterize these GM and WM features in a normal aging (n=316) and an age- and sex-matched preclinical AD cohort (n=81) at each of two imaging sessions spaced three years apart, training on the normal aging population in cross-validation and interrogating the preclinical AD cohort. We find this joint model identifies reproducible, longitudinal changes in GM and WM between the two imaging sessions and that these changes are associated with preclinical AD and are plausible considering the literature. We compare this joint model to two focused models: (1) GM features at the first session and WM at the second and (2) vice versa. The joint model identifies components that correlate poorly with those from the focused models, suggesting the different models resolve different patterns. We find the strength of association with preclinical AD is improved in the GM to WM model, which supports the hypothesis that medial temporal and frontal thinning precedes volume loss in the uncinate fasciculus and inferior anterior-posterior association fibers. These results suggest that jICA effectively generates spatiotemporal hypotheses about GM and WM in preclinical AD, especially when specific intermodality relationships are considered a priori.
引用
收藏
页数:10
相关论文
共 22 条
  • [1] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    [J]. IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [2] Statistical label fusion with hierarchical performance models
    Asman, Andrew J.
    Dagley, Alexander S.
    Landman, Bennett A.
    [J]. MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [3] The Alzheimer's Disease Clinical Spectrum Diagnosis and Management
    Atri, Alireza
    [J]. MEDICAL CLINICS OF NORTH AMERICA, 2019, 103 (02) : 263 - +
  • [4] Cai L. Y., 2021, JOINT CORTICAL SURFA
  • [5] PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
    Cai, Leon Y.
    Yang, Qi
    Hansen, Colin B.
    Nath, Vishwesh
    Ramadass, Karthik
    Johnson, Graham W.
    Conrad, Benjamin N.
    Boyd, Brian D.
    Begnoche, John P.
    Beason-Held, Lori L.
    Shafer, Andrea T.
    Resnick, Susan M.
    Taylor, Warren D.
    Price, Gavin R.
    Morgan, Victoria L.
    Rogers, Baxter P.
    Schilling, Kurt G.
    Landman, Bennett A.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (01) : 456 - 470
  • [6] New MRI Markers for Alzheimer's Disease: A Meta-Analysis of Diffusion Tensor Imaging and a Comparison with Medial Temporal Lobe Measurements
    Clerx, Lies
    Visser, Pieter Jelle
    Verhey, Frans
    Aalten, Pauline
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2012, 29 (02) : 405 - 429
  • [7] Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease
    Duara, R.
    Loewenstein, D. A.
    Potter, E.
    Appel, J.
    Greig, M. T.
    Urs, R.
    Shen, Q.
    Raj, A.
    Small, B.
    Barker, W.
    Schofield, E.
    Wu, Y.
    Potter, H.
    [J]. NEUROLOGY, 2008, 71 (24) : 1986 - 1992
  • [8] On algorithms for permuting large entries to the diagonal of a sparse matrix
    Duff, IS
    Koster, J
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) : 973 - 996
  • [9] Validating the independent components of neuroimaging time series via clustering and visualization
    Himberg, J
    Hyvärinen, A
    Esposito, F
    [J]. NEUROIMAGE, 2004, 22 (03) : 1214 - 1222
  • [10] Kerley C. I., 2021, PYPHEWAS 4 0 3