Fixed point theorem for contraction mappings in probabilistic normed spaces

被引:0
作者
Harikrishnan, P. K. [1 ]
Lafuerza-Guillen, Bernardo [2 ]
Cho, Yeol Je [3 ]
Ravindran, K. T. [4 ]
机构
[1] Deemed Univ, Manipal Acad Higher Educ, Manipal Inst Technol, Dept Math, Manipal 576104, Karnataka, India
[2] Univ Almeria, Dept Matemat Aplicada & Estat, Almeria, Spain
[3] Gyeongsang Natl Univ, Dept Math Educ, Chinju, South Korea
[4] Gurudev Arts & Sci Coll, Payyanur, Kerala, India
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2020年 / 43期
关键词
Menger's Probabilistic normed spaces; sequential continuity; fixed point; probabilistic bounded;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the concept of contractive mappings and phi- contraction mappings on Menger's probabilistic normed spaces are defined with suitable examples. The unique fixed point theorem for contractive mappings and phi- contraction mappings are established in Menger's probabilistic normed spaces.
引用
收藏
页码:818 / 827
页数:10
相关论文
共 14 条
  • [1] Continuity properties of probabilistic norms
    Alsina, C
    Schweizer, B
    Sklar, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (02) : 446 - 452
  • [2] Alsina C., 1993, ACQUATIONES MATH, V46, P91, DOI [10.1007/BF01834000, DOI 10.1007/BF01834000]
  • [3] Bernide V., 2006, ITERATIVE APPROXIMAT
  • [4] Chang S-S, 2001, NONLINEAR OPERATOR T
  • [5] Freese R. W., 2001, Geometry of linear 2-normed spaces
  • [6] New Classes of Generalized PN Spaces and Their Normability
    Harikrishnan P.K.
    Guillén B.L.
    Cho Y.J.
    Ravindran K.T.
    [J]. Acta Mathematica Vietnamica, 2017, 42 (4) : 727 - 746
  • [7] Compactness and D-Boundedness in Menger's 2-Probabilistic Normed Spaces
    Harikrishnan, P. K.
    Lafuerza Guillen, Bernardo
    Ravindran, K. T.
    [J]. FILOMAT, 2016, 30 (05) : 1263 - 1272
  • [8] Harikrishnan P.K., 2012, J PRIME RES MATH, V8, P76
  • [9] NUMERICAL RADIUS INEQUALITIES IN 2-INNER PRODUCT SPACES
    Harikrishnan, Panackal
    Moradi, Hamid Reza
    Omidvar, Mohsen Erfanian
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 415 - 421
  • [10] Interval valued L-fuzzy ideals based on t-norms and t-conorms
    Jagadeesha, B.
    Srinivas, Kedukodi Babushri
    Prasad, Kuncham Syam
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (06) : 2631 - 2641