Geometric limits of knot complements

被引:9
作者
Purcell, Jessica S. [1 ]
Souto, Juan [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
HYPERBOLIC; 3-MANIFOLDS; KLEINIAN-GROUPS; MANIFOLDS; CONVERGENCE; BOUNDARIES; CORES;
D O I
10.1112/jtopol/jtq020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any complete hyperbolic 3-manifold with finitely generated fundamental group, with a single topological end, and which embeds into S-3 is the geometric limit of a sequence of hyperbolic knot complements in S-3. In particular, we derive the existence of hyperbolic knot complements that contain balls of arbitrarily large radius. We also show that a complete hyperbolic 3-manifold with two convex cocompact ends cannot be a geometric limit of knot complements in S-3.
引用
收藏
页码:759 / 785
页数:27
相关论文
共 50 条
  • [41] Finite knot surgeries and Heegaard Floer homology
    Doig, Margaret I.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (02): : 667 - 690
  • [42] On diagrammatic bounds of knot volumes and spectral invariants
    Futer, David
    Kalfagianni, Efstratia
    Purcell, Jessica S.
    [J]. GEOMETRIAE DEDICATA, 2010, 147 (01) : 115 - 130
  • [43] The Gauss-Bonnet-Chern mass under geometric flows
    Ho, Pak Tung
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [44] A second order algebraic knot concordance group
    Powell, Mark
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (02): : 685 - 751
  • [45] Lower bounds on Ricci flow invariant curvatures and geometric applications
    Richard, Thomas
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 703 : 27 - 41
  • [46] Graph Signal Processing for Geometric Data and Beyond: Theory and Applications
    Hu, Wei
    Pang, Jiahao
    Liu, Xianming
    Tian, Dong
    Lin, Chia-Wen
    Vetro, Anthony
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3961 - 3977
  • [47] REDUCIBLE DEHN SURGERY AND THE BRIDGE NUMBER OF A KNOT
    Sayari, Nabil
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2009, 18 (04) : 493 - 504
  • [48] Satellite operators as group actions on knot concordance
    Davis, Christopher W.
    Ray, Arunima
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (02): : 945 - 969
  • [49] Any smooth knot Sn ↪ Rn+2 is isotopic to a cubic knot contained in the canonical scaffolding of Rn+2
    Boege, Margareta
    Hinojosa, Gabriela
    Verjovsky, Alberto
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (01): : 1 - 13
  • [50] First eigenvalues evolution for some geometric operators along the Yamabe flow
    Abolarinwa, Abimbola
    Azami, Shahroud
    [J]. JOURNAL OF GEOMETRY, 2024, 115 (01)