Geometric limits of knot complements

被引:9
|
作者
Purcell, Jessica S. [1 ]
Souto, Juan [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
HYPERBOLIC; 3-MANIFOLDS; KLEINIAN-GROUPS; MANIFOLDS; CONVERGENCE; BOUNDARIES; CORES;
D O I
10.1112/jtopol/jtq020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any complete hyperbolic 3-manifold with finitely generated fundamental group, with a single topological end, and which embeds into S-3 is the geometric limit of a sequence of hyperbolic knot complements in S-3. In particular, we derive the existence of hyperbolic knot complements that contain balls of arbitrarily large radius. We also show that a complete hyperbolic 3-manifold with two convex cocompact ends cannot be a geometric limit of knot complements in S-3.
引用
收藏
页码:759 / 785
页数:27
相关论文
共 50 条
  • [21] General H-matrices and their Schur complements
    Zhang, Cheng-yi
    Xu, Fengmin
    Xu, Zongben
    Li, Jicheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (05) : 1141 - 1168
  • [22] General H-matrices and their Schur complements
    Cheng-yi Zhang
    Fengmin Xu
    Zongben Xu
    Jicheng Li
    Frontiers of Mathematics in China, 2014, 9 : 1141 - 1168
  • [23] Spectral geometry, link complements and surgery diagrams
    Lackenby, Marc
    GEOMETRIAE DEDICATA, 2010, 147 (01) : 191 - 206
  • [24] Spectral geometry, link complements and surgery diagrams
    Marc Lackenby
    Geometriae Dedicata, 2010, 147 : 191 - 206
  • [25] Cooperation in Experimental Games of Strategic Complements and Substitutes
    Potters, Jan
    Suetens, Sigrid
    REVIEW OF ECONOMIC STUDIES, 2009, 76 (03) : 1125 - 1147
  • [26] Tight contact structures on Seifert surface complements
    Kalman, Tamas
    Mathews, Daniel V.
    JOURNAL OF TOPOLOGY, 2020, 13 (02) : 730 - 776
  • [27] Coxeter exponents and orthogonal complements of highest roots
    Burns, J. M.
    Makrooni, M. A.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (07) : 2833 - 2843
  • [28] Oka properties of complements of holomorphically convex sets
    Kusakabe, Yuta
    ANNALS OF MATHEMATICS, 2024, 199 (02) : 899 - 917
  • [29] TOROIDAL SURGERIES AND THE GENUS OF A KNOT
    Eudave-Munoz, Mario
    Guzman-Tristan, Araceli
    OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (03) : 549 - 575
  • [30] Adiabatic Limit, Theta Function, and Geometric Quantization
    Yoshida, Takahiko
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20