Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

被引:20
|
作者
Albani, V. [1 ]
Elbau, P. [1 ]
de Hoop, M. V. [2 ,3 ]
Scherzer, O. [1 ,4 ]
机构
[1] Univ Vienna, Computat Sci Ctr, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX USA
[3] Rice Univ, Dept Earth Sci, Houston, TX USA
[4] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
基金
奥地利科学基金会;
关键词
Approximative source conditions; convergence rates; linear inverse problems; regularization; variational source conditions; TIKHONOV REGULARIZATION;
D O I
10.1080/01630563.2016.1144070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove optimal convergence rates results for regularization methods for solving linear ill-posed operator equations in Hilbert spaces. The results generalizes existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions.
引用
收藏
页码:521 / 540
页数:20
相关论文
共 50 条
  • [41] Tikhonov and Landweber convergence rates: characterization by interpolation spaces
    Andreev, R.
    INVERSE PROBLEMS, 2015, 31 (10)
  • [42] Optimal algorithms in a Krylov subspace for solving linear inverse problems by MFS
    Liu, Chein-Shan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 44 : 64 - 75
  • [43] The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces
    Guan, Xiaoyan
    Wang, Shaoli
    Lv, Ye
    Xu, Fuyi
    ACTA APPLICANDAE MATHEMATICAE, 2016, 143 (01) : 91 - 104
  • [44] Precise asymptotics for complete moment convergence in Hilbert spaces
    KEANG FU
    JUAN CHEN
    Proceedings - Mathematical Sciences, 2012, 122 : 87 - 97
  • [45] Precise asymptotics for complete moment convergence in Hilbert spaces
    Fu, Keang
    Chen, Juan
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (01): : 87 - 97
  • [46] CONVERGENCE RESULTS FOR SMOOTH REGULARIZATIONS OF HYBRID NONLINEAR OPTIMAL CONTROL PROBLEMS
    Haberkorn, T.
    Trelat, E.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (04) : 1498 - 1522
  • [47] The Optimal Convergence Rates for the Multi-dimensional Chemotaxis Model in Critical Besov Spaces
    Xiaoyan Guan
    Shaoli Wang
    Ye Lv
    Fuyi Xu
    Acta Applicandae Mathematicae, 2016, 143 : 91 - 104
  • [48] On general convergence behaviours of finite-dimensional approximants for abstract linear inverse problems
    Caruso, Noe Angelo
    Michelangeli, Alessandro
    Novati, Paolo
    ASYMPTOTIC ANALYSIS, 2022, 127 (1-2) : 167 - 189
  • [49] On learning the optimal regularization parameter in inverse problems
    Chirinos-Rodriguez, Jonathan
    De Vito, Ernesto
    Molinari, Cesare
    Rosasco, Lorenzo
    Villa, Silvia
    INVERSE PROBLEMS, 2024, 40 (12)
  • [50] Low Complexity Regularization of Linear Inverse Problems
    Vaiter, Samuel
    Peyre, Gabriel
    Fadili, Jalal
    SAMPLING THEORY, A RENAISSANCE: COMPRESSIVE SENSING AND OTHER DEVELOPMENTS, 2015, : 103 - 153