Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

被引:20
|
作者
Albani, V. [1 ]
Elbau, P. [1 ]
de Hoop, M. V. [2 ,3 ]
Scherzer, O. [1 ,4 ]
机构
[1] Univ Vienna, Computat Sci Ctr, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX USA
[3] Rice Univ, Dept Earth Sci, Houston, TX USA
[4] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
基金
奥地利科学基金会;
关键词
Approximative source conditions; convergence rates; linear inverse problems; regularization; variational source conditions; TIKHONOV REGULARIZATION;
D O I
10.1080/01630563.2016.1144070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove optimal convergence rates results for regularization methods for solving linear ill-posed operator equations in Hilbert spaces. The results generalizes existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions.
引用
收藏
页码:521 / 540
页数:20
相关论文
共 50 条
  • [31] Higher order convergence rates for Bregman iterated variational regularization of inverse problems
    Sprung, Benjamin
    Hohage, Thorsten
    NUMERISCHE MATHEMATIK, 2019, 141 (01) : 215 - 252
  • [32] CONVERGENCE RATES FOR EXPONENTIALLY ILL-POSED INVERSE PROBLEMS WITH IMPULSIVE NOISE
    Koenig, Claudia
    Werner, Frank
    Hohage, Thorsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 341 - 360
  • [33] Convergence analysis of (statistical) inverse problems under conditional stability estimates
    Werner, Frank
    Hofmann, Bernd
    INVERSE PROBLEMS, 2020, 36 (01)
  • [34] An optimal transport approach for solving dynamic inverse problems in spaces of measures
    Bredies, Kristian
    Fanzon, Silvio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (06): : 2351 - 2382
  • [35] MODIFIED LANDWEBER ITERATION IN BANACH SPACES-CONVERGENCE AND CONVERGENCE RATES
    Hein, Torsten
    Kazimierski, Kamil S.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) : 1158 - 1184
  • [36] OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS
    Wang, Zhaoran
    Liu, Han
    Zhang, Tong
    ANNALS OF STATISTICS, 2014, 42 (06) : 2164 - 2201
  • [37] CONVERGENCE RATES FOR NONLINEAR INVERSE PROBLEMS OF PARAMETER IDENTIFICATION USING BREGMAN DISTANCES
    Hao, Dinh Nho
    Khan, Akhtar A.
    Reich, Simeon
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (05): : 715 - 726
  • [38] Optimal rates for spectral algorithms with least-squares regression over Hilbert spaces
    Lin, Junhong
    Rudi, Alessandro
    Rosasco, Lorenzo
    Cevher, Volkan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (03) : 868 - 890
  • [39] Convergence analysis of Tikhonov regularization for non-linear statistical inverse problems
    Rastogi, Abhishake
    Blanchard, Gilles
    Mathe, Peter
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 2798 - 2841
  • [40] Convergence of non-linear diagonal frame filtering for regularizing inverse problems
    Ebner, Andrea
    Haltmeier, Markus
    INVERSE PROBLEMS, 2024, 40 (05)