Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces

被引:20
|
作者
Albani, V. [1 ]
Elbau, P. [1 ]
de Hoop, M. V. [2 ,3 ]
Scherzer, O. [1 ,4 ]
机构
[1] Univ Vienna, Computat Sci Ctr, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX USA
[3] Rice Univ, Dept Earth Sci, Houston, TX USA
[4] Johann Radon Inst Computat & Appl Math RICAM, Linz, Austria
基金
奥地利科学基金会;
关键词
Approximative source conditions; convergence rates; linear inverse problems; regularization; variational source conditions; TIKHONOV REGULARIZATION;
D O I
10.1080/01630563.2016.1144070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove optimal convergence rates results for regularization methods for solving linear ill-posed operator equations in Hilbert spaces. The results generalizes existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions.
引用
收藏
页码:521 / 540
页数:20
相关论文
共 50 条
  • [1] Generalized Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces
    Andreev, Roman
    Elbau, Peter
    de Hoop, Maarten V.
    Qiu, Lingyun
    Scherzer, Otmar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (05) : 549 - 566
  • [2] On Tikhonov regularization in Banach spaces - optimal convergence rates results
    Hein, Torsten
    APPLICABLE ANALYSIS, 2009, 88 (05) : 653 - 667
  • [3] On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces
    Jin, Bangti
    Kereta, Zeljko
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (02): : 671 - 705
  • [4] Convergence Rates for Linear Inverse Problems in the Presence of an Additive Normal Noise
    Hofinger, Andreas
    Pikkarainen, Hanna K.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (02) : 240 - 257
  • [6] Optimal convergence rates for sparsity promoting wavelet-regularization in Besov spaces
    Hohage, Thorsten
    Miller, Philip
    INVERSE PROBLEMS, 2019, 35 (06)
  • [7] ON THE LIFTING OF DETERMINISTIC CONVERGENCE RATES FOR INVERSE PROBLEMS WITH STOCHASTIC NOISE
    Gerth, Daniel
    Hofinger, Andreas
    Ramlau, Ronny
    INVERSE PROBLEMS AND IMAGING, 2017, 11 (04) : 663 - 687
  • [8] A new second-order dynamical method for solving linear inverse problems in Hilbert spaces
    Huang, Qin
    Gong, Rongfang
    Zhang, Ye
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 473
  • [9] Optimal weighting for linear inverse problems
    Florens, Jean-Pierre
    Sokullu, Senay
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 775 - 802
  • [10] Convergence rates of Tikhonov regularizations for elliptic and parabolic inverse radiativity problems
    Chen, De-Han
    Jiang, Daijun
    Zou, Jun
    INVERSE PROBLEMS, 2020, 36 (07)