Measurement-Induced Power-Law Negativity in an Open Monitored Quantum Circuit

被引:45
作者
Weinstein, Zack [1 ]
Bao, Yimu [1 ]
Altman, Ehud [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
STATE ENTANGLEMENT; SEPARABILITY; UNITARY; ENTROPY;
D O I
10.1103/PhysRevLett.129.080501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generic many-body systems coupled to an environment lose their quantum entanglement due to decoherence and evolve to a mixed state with only classical correlations. Here, we show that measurements can stabilize quantum entanglement within open quantum systems. Specifically, in random unitary circuits with dephasing at the boundary, we find both numerically and analytically that projective measurements performed at a small nonvanishing rate result in a steady state with an L1/3 power-law scaling entanglement negativity within the system. Using an analytical mapping to a statistical mechanics model of directed polymers in a random environment, we show that the power-law negativity scaling can be understood as Kardar-Parisi-Zhang fluctuations due to the random measurement locations. Further increasing the measurement rate leads to a phase transition into an area-law negativity phase, which is of the same universality as the entanglement transition in monitored random circuits without decoherence.
引用
收藏
页数:6
相关论文
共 63 条
[1]  
Lidar DA, 2020, Arxiv, DOI arXiv:1902.00967
[2]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[3]  
Agrawal U, 2021, Arxiv, DOI arXiv:2107.10279
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Symmetry enriched phases of quantum circuits [J].
Bao, Yimu ;
Choi, Soonwon ;
Altman, Ehud .
ANNALS OF PHYSICS, 2021, 435
[6]   Half-Space Stationary Kardar-Parisi-Zhang Equation [J].
Barraquand, Guillaume ;
Krajenbrink, Alexandre ;
Le Doussal, Pierre .
JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) :1149-1203
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   Entanglement between two subsystems, the Wigner semicircle and extreme-value statistics [J].
Bhosale, Udaysinh T. ;
Tomsovic, Steven ;
Lakshminarayan, Arul .
PHYSICAL REVIEW A, 2012, 85 (06)
[9]   Entanglement negativity in extended systems: a field theoretical approach [J].
Calabrese, Pasquale ;
Cardy, John ;
Tonni, Erik .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[10]   Entanglement Negativity in Quantum Field Theory [J].
Calabrese, Pasquale ;
Cardy, John ;
Tonni, Erik .
PHYSICAL REVIEW LETTERS, 2012, 109 (13)