Deep learning enables fast and dense single-molecule localization with high accuracy

被引:157
作者
Speiser, Artur [1 ,2 ,3 ,4 ]
Mueller, Lucas-Raphael [5 ,6 ]
Hoess, Philipp [5 ]
Matti, Ulf [5 ]
Obara, Christopher J. [7 ]
Legant, Wesley R. [8 ,9 ,10 ]
Kreshuk, Anna [5 ]
Macke, Jakob H. [1 ,2 ,3 ,11 ]
Ries, Jonas [5 ]
Turaga, Srinivas C. [7 ]
机构
[1] Tubingen Univ, Machine Learning Sci, Excellence Cluster Machine Learning, Tubingen, Germany
[2] Tech Univ Munich, Dept Elect & Comp Engn, Computat Neuroengn, Munich, Germany
[3] Max Planck Gesell, Res Ctr Caesar, Bonn, Germany
[4] Int Max Planck Res Sch Brain & Behav, Bonn, FL USA
[5] European Mol Biol Lab, Cell Biol & Biophys Unit, Heidelberg, Germany
[6] Heidelberg Univ, Heidelberg, Germany
[7] HHMI Janelia Res Campus, Ashburn, VA USA
[8] UNC, Joint Dept Biomed Engn, Chapel Hill, NC USA
[9] NCSU, Raleigh, NC USA
[10] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27515 USA
[11] Max Planck Inst Intelligent Syst, Dept Empir Inference, Tubingen, Germany
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
OPTICAL RECONSTRUCTION MICROSCOPY; RESOLUTION;
D O I
10.1038/s41592-021-01236-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM. DECODE uses deep learning for localizing single emitters in high-density two-dimensional and three-dimensional single-molecule localization microscopy data. DECODE outperforms available methods and enables fast live-cell SMLM of dynamic processes.
引用
收藏
页码:1082 / +
页数:25
相关论文
共 41 条
[1]   Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking [J].
Annibale, Paolo ;
Vanni, Stefano ;
Scarselli, Marco ;
Rothlisberger, Ursula ;
Radenovic, Aleksandra .
PLOS ONE, 2011, 6 (07)
[2]  
[Anonymous], 2018, Technical Report, DOI DOI 10.1101/267096
[3]   A high-density 3D localization algorithm for stochastic optical reconstruction microscopy [J].
Babcock, Hazen ;
Sigal, Yaron M. ;
Zhuang, Xiaowei .
Optical Nanoscopy, 2012, 1 (01) :1-10
[4]   Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines [J].
Babcock, Hazen P. ;
Zhuang, Xiaowei .
SCIENTIFIC REPORTS, 2017, 7
[5]   Fourier ring correlation as a resolution criterion for super-resolution microscopy [J].
Banterle, Niccolo ;
Khanh Huy Bui ;
Lemke, Edward A. ;
Beck, Martin .
JOURNAL OF STRUCTURAL BIOLOGY, 2013, 183 (03) :363-367
[6]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[7]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[8]   Fisher information theory for parameter estimation in single molecule microscopy: tutorial [J].
Chao, Jerry ;
Ward, E. Sally ;
Ober, Raimund J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (07) :B36-B57
[9]   Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution [J].
Chen, Bi-Chang ;
Legant, Wesley R. ;
Wang, Kai ;
Shao, Lin ;
Milkie, Daniel E. ;
Davidson, Michael W. ;
Janetopoulos, Chris ;
Wu, Xufeng S. ;
Hammer, John A., III ;
Liu, Zhe ;
English, Brian P. ;
Mimori-Kiyosue, Yuko ;
Romero, Daniel P. ;
Ritter, Alex T. ;
Lippincott-Schwartz, Jennifer ;
Fritz-Laylin, Lillian ;
Mullins, R. Dyche ;
Mitchell, Diana M. ;
Bembenek, Joshua N. ;
Reymann, Anne-Cecile ;
Boehme, Ralph ;
Grill, Stephan W. ;
Wang, Jennifer T. ;
Seydoux, Geraldine ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Betzig, Eric .
SCIENCE, 2014, 346 (6208) :439-+
[10]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)