Topological analyses of functional connectomics: A crucial role of global signal removal, brain parcellation, and null models

被引:33
作者
Chen, Xiaodan [1 ,2 ,3 ]
Liao, Xuhong [1 ,2 ,3 ]
Dai, Zhengjia [1 ,2 ,3 ]
Lin, Qixiang [1 ,2 ,3 ]
Wang, Zhiqun [4 ]
Li, Kuncheng [4 ]
He, Yong [1 ,2 ,3 ]
机构
[1] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing, Peoples R China
[2] Beijing Normal Univ, Beijing Key Lab Brain Imaging & Connect, Beijing, Peoples R China
[3] Beijing Normal Univ, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[4] Capital Med Univ, Dept Radiol, Xuanwu Hosp, Beijing, Peoples R China
关键词
connectomics; graph theory; hub; modularity; small-worldness; TEST-RETEST RELIABILITY; MILD COGNITIVE IMPAIRMENT; SMALL-WORLD; ALZHEIMERS-DISEASE; WHITE-MATTER; NETWORK HUBS; MOTION ARTIFACT; CONNECTIVITY; FMRI; IMPACT;
D O I
10.1002/hbm.24305
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recently, functional connectome studies based on resting-state functional magnetic resonance imaging (R-fMRI) and graph theory have greatly advanced our understanding of the topological principles of healthy and diseased brains. However, how different strategies for R-fMRI data preprocessing and for connectome analyses jointly affect topological characterization and contrastive research of brain networks remains to be elucidated. Here, we used two R-fMRI data sets, a healthy young adult data set and an Alzheimer's disease (AD) patient data set, and up to 42 analysis strategies to comprehensively investigate the joint influence of three key factors (global signal regression, regional parcellation schemes, and null network models) on the topological analysis and contrastive research of whole-brain functional networks. At the global level, we first found that these three factors affected not only the quantitative values but also the individual variability profile in small-world related metrics and modularity, wherein global signal regression exhibited the predominant influence. Moreover, strategies without global signal regression and with topological randomization null model enhanced the sensitivity of the detection of differences between AD and control groups in small-worldness and modularity. At the nodal level, strategies of global signal regression dominantly influenced the spatial distribution of both hubs and between-group differences in terms of nodal degree centrality. Together, we highlight the remarkable joint influence of global signal regression, regional parcellation schemes and null network models on functional connectome analyses in both health and diseases, which may provide guidance for the choice of analysis strategies in future functional network studies.
引用
收藏
页码:4545 / 4564
页数:20
相关论文
共 97 条
[1]   Is functional integration of resting state brain networks an unspecific biomarker for working memory performance? [J].
Alavash, Mohsen ;
Doebler, Philipp ;
Holling, Heinz ;
Thiel, Christiane M. ;
Giessing, Carsten .
NEUROIMAGE, 2015, 108 :182-193
[2]  
Arslan S., 2017, NEUROIMAGE, V13, P30302
[3]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[4]   Adaptive reconfiguration of fractal small-world human brain functional networks [J].
Bassettt, Danielle S. ;
Meyer-Lindenberg, Andreas ;
Achard, Sophie ;
Duke, Thomas ;
Bullmore, Edward T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (51) :19518-19523
[5]   Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI [J].
Birn, RM ;
Diamond, JB ;
Smith, MA ;
Bandettini, PA .
NEUROIMAGE, 2006, 31 (04) :1536-1548
[6]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[7]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[8]   Preprocessing strategy influences graph-based exploration of altered functional networks in major depression [J].
Borchardt, Viola ;
Lord, Anton Richard ;
Li, Meng ;
van der Meer, Johan ;
Heinze, Hans-Jochen ;
Bogerts, Bernhard ;
Breakspear, Michael ;
Walter, Martin .
HUMAN BRAIN MAPPING, 2016, 37 (04) :1422-1442
[9]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[10]  
Brodmann K., 1909, VERGLEICHENDE LOKALI