Dual CNN-Based Channel Estimation for MIMO-OFDM Systems

被引:61
作者
Jiang, Peiwen [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Li, Geoffrey Ye [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat Sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
基金
中国国家自然科学基金;
关键词
Complexity theory; Correlation; Channel estimation; Estimation; Convolutional neural networks; Antennas; Robustness; Deep learning; CNN; RNN; MIMO; channel estimation; robustness; MASSIVE MIMO; POWER;
D O I
10.1109/TCOMM.2021.3085895
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, convolutional neural network (CNN)-based channel estimation (CE) for massive multiple-input multiple-output communication systems has achieved remarkable success. However, complexity even needs to be reduced, and robustness can even be improved. Meanwhile, existing methods do not accurately explain which channel features help the denoising of CNNs. In this paper, we first compare the strengths and weaknesses of CNN-based CE in different domains. When complexity is limited, the channel sparsity in the angle-delay domain improves denoising and robustness whereas large noise power and pilot contamination are handled well in the spatial-frequency domain. Thus, we develop a novel network, called dual CNN, to exploit the advantages in the two domains. Furthermore, we introduce an extra neural network, called HyperNet, which learns to detect scenario changes from the same input as the dual CNN. HyperNet updates several parameters adaptively and combines the existing dual CNNs to improve robustness. Experimental results show improved estimation performance for the time-varying scenarios. To further exploit the correlation in the time domain, a recurrent neural network framework is developed, and training strategies are provided to ensure robustness to the changing of temporal correlation. This design improves channel estimation performance but its complexity is still low.
引用
收藏
页码:5859 / 5872
页数:14
相关论文
共 44 条
[11]   Deep Learning Based Channel Estimation for Massive MIMO With Mixed-Resolution ADCs [J].
Gao, Shen ;
Dong, Peihao ;
Pan, Zhiwen ;
Li, Geoffrey Ye .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) :1989-1993
[12]   ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers [J].
Gao, Xuanxuan ;
Jin, Shi ;
Wen, Chao-Kai ;
Li, Geoffrey Ye .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (12) :2627-2630
[13]   COMPRESSIVE SENSING TECHNIQUES FOR NEXT-GENERATION WIRELESS COMMUNICATIONS [J].
Gao, Zhen ;
Dai, Linglong ;
Han, Shuangfeng ;
I, Chih-Lin ;
Wang, Zhaocheng ;
Hanzo, Lajos .
IEEE WIRELESS COMMUNICATIONS, 2018, 25 (03) :144-153
[14]   Deep HyperNetwork-Based MIMO Detection [J].
Goutay, Mathieu ;
Aoudia, Faycal Ait ;
Hoydis, Jakob .
PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
[15]  
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TNSE.2020.2997359, 10.1109/TWC.2020.2968430]
[16]  
Ha D., 2016, Hypernetworks
[17]   Model-Driven Deep Learning for Physical Layer Communications [J].
He, Hengtao ;
Jin, Shi ;
Wen, Chao-Kai ;
Gao, Feifei ;
Li, Geoffrey Ye ;
Xu, Zongben .
IEEE WIRELESS COMMUNICATIONS, 2019, 26 (05) :77-83
[18]   Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems [J].
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) :852-855
[19]   Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System [J].
Huang, Hongji ;
Yang, Jie ;
Huang, Hao ;
Song, Yiwei ;
Gui, Guan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) :8549-8560
[20]   Pilot-Based LMMSE Channel Estimation for OFDM Systems With Power-Delay Profile Approximation [J].
Hung, Kun-Chien ;
Lin, David W. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (01) :150-159