Diagnosis of the Cane Sugar Crystallization Process by Multifractal Analysis of Temperature Time Series

被引:1
作者
Moguel-Castaneda, Jazael G. [1 ]
Romero-Bustamante, Jorge A. [1 ]
Velazquez-Camilo, Oscar [2 ]
Puebla, Hector [1 ]
Hernandez-Martinez, Eliseo [3 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Energia, Av San Pablo Xalpa, Mexico City 02200, DF, Mexico
[2] Univ Veracruzana, Fac Ciencias Quim, Bv Adolfo Ruiz Cortines, Veracruz 94294, Mexico
[3] Univ Veracruzana, Fac Ciencias Quim, Veracruz 91000, Mexico
关键词
Cane sugar crystallization; Crystallization; Multifractal analysis; Process analysis; Temperature time series; DETRENDED FLUCTUATION ANALYSIS; FRACTAL ANALYSIS;
D O I
10.1002/ceat.202100231
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The monitoring and diagnosis of crystallization processes are difficult due to the interaction of nucleation and crystal growth phenomena. In recent years, image and time series analysis using fractal methodologies showed potential as an alternative for monitoring crystal growth, although the available results are scarce. In this work, the multifractal detrended fluctuation analysis (MF-DFA) was applied to temperature time series obtained from a laboratory-scale cane sugar crystallization operated at different operating conditions. MF-DFA reflects that the crystallization process exhibits multifractal properties associated with the dynamic behavior of the underlying phenomena. Thus, multifractal analysis can identify how operational changes influence the crystal growth and formed crystal mass.
引用
收藏
页码:2064 / 2072
页数:9
相关论文
共 46 条
[31]   QUANTIFICATION OF SCALING EXPONENTS AND CROSSOVER PHENOMENA IN NONSTATIONARY HEARTBEAT TIME-SERIES [J].
PENG, CK ;
HAVLIN, S ;
STANLEY, HE ;
GOLDBERGER, AL .
CHAOS, 1995, 5 (01) :82-87
[32]   Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece [J].
Philippopoulos, Kostas ;
Kalamaras, Nikolaos ;
Tzanis, Chris G. ;
Deligiorgi, Despina ;
Koutsogiannis, Ioannis .
ATMOSPHERE, 2019, 10 (06)
[33]   Using Matlab's wavelet toolbox to compare electric signals outputted by microbial fuel cells [J].
Prado, P. F. ;
Mayen, M. A. G. ;
Silva, G. F. ;
Duarte, I. C. S. .
SENSING AND BIO-SENSING RESEARCH, 2019, 24
[34]   A study of temperature sensor location based on fractal analysis for cascade control schemes in tubular reactors [J].
Ramirez-Castelan, Carlos Eduardo ;
Moguel-Castaneda, Jazael ;
Puebla, Hector ;
Hernandez-Martinez, Eliseo .
CHEMICAL ENGINEERING SCIENCE, 2016, 141 :195-204
[35]   Fractal and multifractal analysis of electrochemical noise to corrosion evaluation in A36 steel and AISI 304 stainless steel exposed to MEA-CO2 aqueous solutions [J].
Ramirez-Platas, Mariana ;
Morales-Cabrera, Miguel A. ;
Rivera, Victor M. ;
Morales-Zarate, Epifanio ;
Hernandez-Martinez, Eliseo .
CHAOS SOLITONS & FRACTALS, 2021, 145
[36]  
Russell E.L., 2000, Data-driven Techniques for Fault Detection and Diagnosis in Chemical Processes
[37]   Multifractal analysis of ZnO nanoparticles [J].
Saha, Rajat K. ;
Debanath, Mrinal K. ;
Saikia, Eeshankur .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
[38]  
Sánchez-Sánchez KB, 2017, REV MEX ING QUIM, V16, P1029
[39]   CLUSTER-ANALYSIS METHOD FOR GROUPING MEANS IN ANALYSIS OF VARIANCE [J].
SCOTT, AJ ;
KNOTT, M .
BIOMETRICS, 1974, 30 (03) :507-512
[40]   Statistical physics and physiology: Monofractal and multifractal approaches [J].
Stanley, HE ;
Amaral, LAN ;
Goldberger, AL ;
Havlin, S ;
Ivanov, PC ;
Peng, CK .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 270 (1-2) :309-324