An Inverse Source Problem of Space-Fractional Diffusion Equation

被引:2
作者
Liu, Songshu [1 ]
Feng, Lixin [2 ]
Zhang, Guilai [1 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Hebei, Peoples R China
[2] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Space-fractional diffusion equation; Inverse source problem; Simplified generalized Tikhonov regularization method; A priori parameter choice; A posteriori parameter choice; PARAMETER-ESTIMATION; ANOMALOUS DIFFUSION; UNKNOWN SOURCE; REGULARIZATION; BEHAVIOR; MODEL;
D O I
10.1007/s40840-021-01174-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to an inverse space-dependent source problem for space-fractional diffusion equation. Furthermore, we show that this problem is ill-posed in the sense of Hadamard, i.e., the solution (if it exists) does not depend continuously on the data. In addition, we propose a simplified generalized Tikhonov regularization method and prove the corresponding convergence estimates by using a priori regularization parameter choice rule and a posteriori parameter choice rule, respectively. Finally, numerical examples are carried to support the theoretical results and illustrate the effectiveness of the proposed method.
引用
收藏
页码:4405 / 4424
页数:20
相关论文
共 31 条
[21]   The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics [J].
Metzler, R ;
Klafter, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :R161-R208
[22]   Implicit finite difference approximation for time fractional diffusion equations [J].
Murio, Diego A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :1138-1145
[23]   Waiting time distributions in financial markets [J].
Sabatelli, L ;
Keating, S ;
Dudley, J ;
Richmond, P .
EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (02) :273-275
[24]   Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems [J].
Sakamoto, Kenichi ;
Yamamoto, Masahiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) :426-447
[25]   An inverse problem for fractional diffusion equation in 2-dimensional case: Stability analysis and regularization [J].
Xiong, Xiangtuan ;
Zhou, Qian ;
Hon, Y. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) :185-199
[26]   IDENTIFYING AN UNKNOWN SOURCE IN SPACE-FRACTIONAL DIFFUSION EQUATION [J].
Yang, Fan ;
Fu, Chuli ;
Li, Xiaoxiao .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) :1012-1024
[27]   Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium [J].
Yu, Bo ;
Jiang, Xiaoyun ;
Wang, Chu .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 :106-118
[28]   Reaction front in an A+B→C reaction-subdiffusion process -: art. no. 036126 [J].
Yuste, SB ;
Acedo, L ;
Lindenberg, K .
PHYSICAL REVIEW E, 2004, 69 (03) :036126-1
[29]   Inverse source problem for a fractional diffusion equation [J].
Zhang, Ying ;
Xu, Xiang .
INVERSE PROBLEMS, 2011, 27 (03)
[30]   An inverse problem for space-fractional backward diffusion problem [J].
Zhao, Jingjun ;
Liu, Songshu ;
Liu, Tao .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (08) :1147-1158